
Available

CAV
Evaluation

Artifact

Functional

CAV
Evaluation

Artifact

Randomized Synthesis for Diversity and Cost
Constraints with Control Improvisation⋆

Andreas Gittis*, Eric Vin*, and
Daniel J. Fremont

University of California, Santa Cruz, USA
{agittis,evin,dfremont}@ucsc.edu

Abstract. In many synthesis problems, it can be essential to gener-
ate implementations which not only satisfy functional constraints but
are also randomized to improve variety, robustness, or unpredictability.
The recently-proposed framework of control improvisation (CI) provides
techniques for the correct-by-construction synthesis of randomized sys-
tems subject to hard and soft constraints. However, prior work on CI
has focused on qualitative specifications, whereas in robotic planning
and other areas we often have quantitative quality metrics which can be
traded against each other. For example, a designer of a patrolling security
robot might want to know by how much the average patrol time needs
to be increased in order to ensure that a particular aspect of the robot’s
route is sufficiently diverse and hence unpredictable. In this paper, we
enable this type of application by generalizing the CI problem to sup-
port quantitative soft constraints which bound the expected value of a
given cost function, and randomness constraints which enforce diversity
of the generated traces with respect to a given label function. We estab-
lish the basic theory of labelled quantitative CI problems, and develop
efficient algorithms for solving them when the specifications are encoded
by finite automata. We also provide an approximate improvisation al-
gorithm based on constraint solving for any specifications encodable as
Boolean formulas. We demonstrate the utility of our problem formula-
tion and algorithms with experiments applying them to generate diverse
near-optimal plans for robotic planning problems.

1 Introduction

Correct-by-construction synthesis of systems from high-level specifications has
become a popular paradigm in fields ranging from circuit design [5] to robotic
task planning [26]. Synthesis techniques for many different types of specifications
have been developed, especially for temporal logic formulas, which can encode
many properties of interest [15]. One less-studied type of specification are ran-
domness constraints that require the system’s behavior to be sufficiently random,
for instance by being close to a uniform distribution over the set of allowed be-
haviors. Such specifications are useful in many applications, as randomness can

⋆ The two first authors contributed equally to the paper.

https://doi.org/10.5281/zenodo.6558391

2 A. Gittis*, E. Vin*, and D. J. Fremont

provide robustness, variety, and unpredictability to a system. For example, fuzz
testing tools often use constraints to select classes of inputs which are more likely
to trigger bugs, but then search randomly within that class to prevent bias [30].
In robotic planning, a patrolling security robot that uses a fixed plan satisfy-
ing its requirements might be vulnerable to exploitation; adding randomness to
make its route unpredictable can make exploitation more difficult.

While there has been substantial work on synthesis with stochastic environ-
ments (e.g. [10,2]), randomness constraints require the system itself to behave
randomly even if the environment is deterministic. Furthermore, unlike most
specifications used in synthesis, randomness constraints are properties not of in-
dividual behaviors but rather of their distribution, and they cannot be concisely
encoded into existing specification formalisms like PCTL [22] and SGL [3]. As a
result, synthesis of systems under such constraints requires new techniques.

A recently-proposed paradigm for the correct-by-construction synthesis of
systems under randomness constraints is algorithmic improvisation [14,17,16].
Algorithmic improvisation comprises a class of synthesis problems whose goal
is to construct a randomized algorithm, an improviser, satisfying three kinds of
constraints: hard constraints that the improviser’s output must always satisfy,
soft constraints that need only be satisfied to a certain (tunable) extent, and ran-
domness constraints requiring the output to be sufficiently random. These types
of constraints correspond to natural requirements arising for example in robot
planning: the hard constraints can encode safety or other functional require-
ments, the soft constraints can encode notions of efficiency or optimality, and
the randomness constraints enforce diversity or unpredictability. The original
and most-studied form of algorithmic improvisation is the control improvisation
(CI) problem (introduced in [13] and formalized in [17,18]), where the improviser
generates finite sequences of symbols, the hard constraint is a trace property, the
soft constraint requires some trace property hold with at least a desired proba-
bility, and the randomness constraint puts upper and lower bounds on the proba-
bility of individual outputs. Control improvisation and its extensions have been
successfully used for musical improvisation [14], robotic planning [20], human
modeling subject to constraints [1], and generating synthetic datasets for testing
and training cyber-physical systems with machine learning components [19].

However, the prior work on CI is not general enough to cover many random-
ized synthesis problems of interest, for two reasons. First, many planning, design
space exploration, and other problems come with a cost function expressing how
optimal a particular solution is; in the setting of generating randomized solu-
tions, the most natural soft constraint would be to require that the expected cost
of a solution should be low, so that we can obtain a diverse set of near-optimal
solutions. In a patrolling robot application, for example, the fastest patrol route
might be unique and so predictable, and we then want to know by how much we
would need to increase the average patrol time in order to enable a sufficiently-
diverse set of routes. The prior work on CI cannot provide such an analysis.

Second, while the CI randomness constraint is sufficient to make the impro-
viser’s exact output unpredictable, it is not sufficient to ensure diversity when

Randomized Synthesis for Diversity and Cost Constraints with CI 3

many outputs are similar to each other. Continuing our patrolling robot exam-
ple, suppose that the robot has a choice of two rooms to go through: one room is
larger, and so there are (say) 106 possible paths through it, vs. only 103 through
the other room. Even if a perfectly-uniform distribution over all these paths is
possible given our other constraints, the robot will end up entering the larger
room almost all of the time. But from the point of view of an adversary that
wishes to avoid being seen by the robot, the exact path is not relevant: what
matters is which room the robot will enter, and that is highly predictable. For
this application, we need a randomness requirement that enforces diversity not
over the output of the improviser, but over some attribute of the output.

To enable such applications, in this paper we introduce the concept of La-
belled Quantitative Control Improvisation (LQCI). This problem extends CI with
a soft constraint bounding the expected cost of generated traces, and a random-
ness constraint requiring near-uniformity of the label of a trace, given by an
arbitrary label function. We study the theory of LQCI, establishing precise con-
ditions for when an LQCI problem is solvable and a general construction for
solving it. We use our construction to develop efficient improvisation algorithms
for a broad class of specifications given by finite automata, including common
cost functions such as mission time or path length. For specifications not easily
encoded to (reasonably-sized) automata, we provide an approximate improvisa-
tion algorithm based on constraint solving that handles symbolic specifications
encoded as Boolean formulas. We also explore an extension of the LQCI problem
for finding the maximum-entropy distribution satisfying the other constraints (as
in [31]), and develop an algorithm for solving it using convex optimization. Fi-
nally, we conduct a case study demonstrating that our approach allows us to
formalize and solve realistic robotic planning problems.

In summary, the main contributions of this paper are:

– The labelled quantitative control improvisation problem definition (Sec. 2);

– A characterization of which LQCI problems are solvable, and a general con-
struction for solving them (Sec. 3);

– Efficient improvisation algorithms for finite automata specifications (Sec. 4);

– An approximate algorithm for Boolean formula specifications (Sec. 5);

– An algorithm for maximum-entropy LQCI problems (Sec. 6);

– Experiments using our algorithms for robotic planning (Sec. 7).

We conclude in Sec. 8 with a summary of results and directions for future work.
For brevity, we defer full proofs of all results to the Appendix.

2 Overview and Problem Definition

In this section we formally define the LQCI problem, first using applications to
robotic planning and fuzz testing to motivate various aspects of our definitions.
We will return to the robotic planning example for our experiments in Sec. 7.

4 A. Gittis*, E. Vin*, and D. J. Fremont

2.1 Motivating Examples

Robotic Planning Consider the problem of generating a path for a package
delivery robot, where the robot should efficiently visit various drop-off points,
visiting charging stations as necessary along the way. Discretizing the world
into a grid, we can represent a path as a finite sequence of north, south, east,
and west moves. We might have various requirements for such paths, falling
into the three types of constraints of a control improvisation problem described
above: hard constraints such as completing mission objectives and not navigating
into impassable terrain, soft constraints such as preferring shorter paths, and
randomness constraints to ensure the chosen path is unpredictable. However, as
we saw in Sec. 1, randomness over paths can be less important than randomness
over specific features of a path: here, it might be that charging leaves the robot
vulnerable for an extended period, so that it is important to limit the extent
to which an adversary can predict ahead of time which charging station will be
used. If there are 3 charging stations, then all possible paths are divided into 3
classes, and we want the class of a generated path to be unpredictable; we can
formalize this as a label function which assigns labels to paths, and require that
the distribution over labels be close to uniform. Since we do not want to simply
pick a single path from each label class, we can also enforce randomness within
each class, either by bounding the conditional probabilities of paths (so that
no path is too likely relative to others in its class) or by taking the maximum-
entropy distribution that satisfies our randomness-over-labels condition (we will
return to this approach in Sec. 6).

For efficiency, we want our robot to use routes which are as fast as possible,
taking into account varying terrain. We could model this using a cost function
assigning numerical costs to each path: here, the total time needed to traverse it.
However, as mentioned in Sec. 1, prior work on CI can only encode Boolean soft
constraints, such as requiring the cost of a path to be at most 5 with probability
at least 0.9. While this does allow for some control over the cost, it requires
setting an arbitrary threshold, and otherwise ignores the actual values of the cost;
thus, a path of cost 6 is treated no differently than a path of cost 105. Instead,
we want to bound the expected cost of a path, so that both the probabilities of
individual paths and their absolute costs are taken into account.

Putting all this together, we define our example planning problem as generat-
ing paths through the grid worlds in Fig. 1, subject to the following constraints:

Hard Constraint:
(a) The robot must begin in the start cell S and must end in the end cell E.
(b) The robot must visit all package drop-off points O.
(c) The robot must charge at a charging station C.
(d) The robot must not enter impassable locations X.
Cost Constraint:
The expected time to complete the mission must be at most a constant c.
Randomness over Labels:
For each choice of charging station, the chance that the robot uses that
station must be at least λ and at most ρ.

Randomized Synthesis for Diversity and Cost Constraints with CI 5

(a) Small Grid World (6x6) (b) Large Grid World (7x7)

Fig. 1: Grid worlds for our robotic planning example. Darker background indi-
cates higher cost and letters indicate: start and end points (S, E), impassable
locations (X), delivery locations (O), charging stations (C).

Randomness over Words:
Conditioned on selecting a certain charging station, the probability of picking
any path must be at least α and at most β.

Here, we assume that each grid cell has a cost representing how long it takes
to traverse, with the cost of a path (the total mission time) being the sum
of the costs of its cells. In Fig. 1, we show higher-cost cells as being darker,
with the costs ranging from 0–3 for the small world and 0–10 for the large
world. The layout of the map was chosen to admit a variety of different paths,
motivated as follows: we envision an impassible river dividing the top and bottom
halves of the map, with one low-cost bridge and two high-cost fords. The top-left
charging station is a windmill and requires climbing a hill to access; there is also
a hydroelectric station next to the river, and an easily-accessible substation near
the main north-south road.

Fuzz Testing Prior work has shown that a variety of programs and protocols
can be comprehensively tested by randomly sampling from automata encoding
constraints on acceptable tests [12]. LQCI allows us to preserve such guarantees
while exercising additional control over which tests are generated.

As an example, consider the problem of generating randomized network ac-
tivity for a set of devices communicating over TCP; this could be useful to test
robustness of a network monitoring application or network stack. There are a
variety of different constraints we might wish to impose on the sequences of pack-
ets we generate: each connection should conform to the TCP protocol, so that
the tests are meaningful1; tests should exhibit a variety of different behaviors

1 We might also want to generate tests that deviate from the protocol. This could be
done in a variety of ways, e.g. modifying our constraints to allow certain types of
deviations, or first generating tests that conform to the protocol and subsequently
mutating them.

6 A. Gittis*, E. Vin*, and D. J. Fremont

such as successful/failed connections, interleaving of packets between different
connections, etc.; and tests should be as short as possible while still exhibiting
these different behaviors, so that we can maximize the number of tests we can
perform in a given time. These constraints have trade-offs: for example, tests
with failed connections that must be retried will necessarily be longer. As in
the robotic planning example, we formulate these requirements as cost and label
constraints, which allow us to balance our randomness and control needs.

For concreteness, consider the specific example of generating packet traces for
5 systems communicating over TCP. Our hard constraint can enforce that each
connection follows the TCP protocol, using an encoding of the operation of the
protocol as a finite automaton [25] (we will present efficient algorithms for LQCI
with automata specifications below). Our cost function can assign a cost equal to
the length of the trace, so that we prefer shorter sequences (whereas if we simply
sampled uniformly from the language of the TCP automaton up to some length,
longer sequences would be generated more frequently as there are exponentially
more of them). Our label function could use two labels, distinguishing traces with
connections that terminate cleanly from those that involve system failures and
timeouts (we could also further subdivide into several types of failures). There
are many more ways for a connection to fail than to terminate cleanly, and
these two classes of traces might have significantly different lengths on average,
but we want to ensure that our tests cover both cases adequately. By imposing
constraints on the expected cost of a trace, as well as randomness constraints
over the label and within each label class, we can control test length while
enforcing sufficient diversity among the tests. In fact, we will see below that
our LQCI algorithms can find the minimum-cost distribution consistent with
the randomness constraints, thereby allowing us to test as efficiently as possible
given coverage requirements.

2.2 Problem Definition

To formalize synthesis problems like those described above, we define the LQCI
problem. Following the definition of CI [17,18], we frame the problem as sampling
words over a finite alphabet Σ subject to several constraints. We use the general
term specification to refer to an encoding of a property of words (a language):
for example, a deterministic finite automaton (DFA) is a specification, where
the DFA accepts a word if and only if it satisfies the specification; a Boolean
formula is another kind of specification. The complexity of the LQCI problem
will vary depending on the type of specifications used, as we will see later.

Definition 1. A Labelled Quantitative Control Improvisation (LQCI) instance

over an alphabet Σ is a tuple C = (H,K, L,m, n, c, λ, ρ, α̂, β̂) which contains:

– m,n ∈ N, lower and upper bounds on word length (with m ≤ n);
– H, a hard specification that must be satisfied by all words;
– K : Σ∗ → Q, a cost function mapping words to rational costs;
– L : Σ∗ → Ω, a label function mapping words to a finite set of labels Ω =
{ℓ1, . . . ℓ|Ω|};

Randomized Synthesis for Diversity and Cost Constraints with CI 7

– c ∈ Q+, an upper bound on expected cost;
– λ, ρ ∈ Q, lower and upper bounds on the marginal probability of selecting a

word with a certain label (with 0 ≤ λ ≤ ρ ≤ 1);

– α̂i, β̂i ∈ Q, lower and upper bounds on the conditional probability of words
in label class ℓi (with 0 ≤ α̂i ≤ β̂i ≤ 1 for all i).

We note that the specifications and functions above are abstract, and our
definition does not make any assumptions about how they will be encoded in
a particular problem. For example, the hard constraint H over words might
be instantiated as the language of a DFA, context-free grammar, etc. Later in
the paper we will develop algorithms for solving classes of LQCI instances with
specification formalisms that satisfy certain properties.

The restriction to finite traces (via the length bounds m and n) is consistent
with prior work on using CI for robotic planning [20]: we frequently want plans
that complete within a time limit. Likewise in fuzz testing we want tests of
bounded length. Furthermore, as we will see, finite-trace LQCI is still a highly
nontrivial problem, so we leave its extension to infinite traces as future work.

Given an LQCI instance, we define several convenient notations:

– Σm:n is all words satisfying the length bounds: {w ∈ Σ∗ | m ≤ |w| ≤ n}.
– The set of improvisations I consists of all words satisfying the length bounds

and the hard specification. These are all the words which our improviser is
allowed to generate.

– Since the length bounds m,n ensure I is finite, we can consider the image of
I under K, which must also be finite. We will refer to this set of possible costs
as Θ = {θ1, . . . , θ|Θ|} (note that enumerating Θ may require an algorithm).

– The cost class Ii,k consists of all words with label ℓi and cost θk which
satisfy the length bounds and the hard specification, i.e., {w ∈ Σm:n | w ∈
L(H), L(w) = ℓi,K(w) = θk}. As the costs of all words in a cost class are
equal, we may speak of the cost of a cost class without ambiguity.

– The label class Ii consists of all words with label ℓi as above but any cost,

i.e.,
⋃|Θ|

k=1 Ii,k.
– We write Pr[X(w) | w ← D] for the probability (or E[. . .] for the expected

value) of X(w) given that w is sampled from distribution D.

Definition 2. Given an LQCI instance C, a distribution D over Σ∗ is an im-
provising distribution for that instance if it satisfies the following constraints:

1. Hard Constraint: Pr[w ∈ I | w ← D] = 1
2. Cost Constraint: E[K(w) | w ← D] ≤ c
3. Randomness over Labels: ∀i ∈ {1, . . . , |Ω|}, λ ≤ Pr [w ∈ Ii | w ← D] ≤ ρ
4. Randomness over Words: ∀i ∈ {1, . . . , |Ω|}, ∀y ∈ Ii,

α̂i ≤ Pr[y = w | w ∈ Ii, w ← D] ≤ β̂i

We say that an LQCI instance is feasible if there exists an improvising dis-
tribution for it (and infeasible otherwise). An improviser for an LQCI instance

8 A. Gittis*, E. Vin*, and D. J. Fremont

is a probabilistic algorithm which takes no input, has finite expected runtime,
and whose output distribution is an improvising distribution. Given an LQCI
instance C, the LQCI problem is then to determine if C is feasible, and, if so,
to generate an improviser for C. Finally, an improvisation scheme for a class
of LQCI instances is a probabilistic algorithm with finite expected runtime that
solves the LQCI problem for instances in that class.

As described in the preceding sections, the goal of our problem definition
is to provide formal guarantees about the randomness of improvisations while
respecting the various constraints. In some applications, we may simply wish
to maximize randomness: then precise control over the randomness parameters
for each label class is not needed, and in fact finding values of α̂i, β̂i which
maximize randomness while remaining feasible is nontrivial. Building on our
analysis of the basic LQCI problem in the next several sections, in Sec. 6 we
will introduce a maximum-entropy version of LQCI which directly maximizes
randomness without requiring α̂i and β̂i to be explicitly specified.

3 Feasibility Conditions and the Greedy Construction

In this section, we introduce a greedy construction which will be used to provide
necessary and sufficient conditions for an LQCI instance to be feasible. This
construction will also form the basis of the improvisation schemes presented
later in the paper. For now, we will present the construction without assuming
any particular specification formalism and ignoring algorithmic concerns: the
description presented here will consider traces one by one and thus be inefficient.
The next section will develop efficient implementations of these ideas.

The greedy LQCI construction is separated into two phases. In the first phase,
the greedy cost construction, we define a distribution over each label class indi-
vidually, greedily optimizing cost by giving as much weight as we can to the
cheapest elements while respecting the randomness over words condition. In the
second phase, the greedy label construction, we define a distribution over labels,
greedily assigning maximum marginal probability to the label classes with the
cheapest expected costs under the distributions from the first phase while re-
specting the randomness over labels condition. The intuition is that we want to
first make sampling within each label class as cheap as possible, and then sample
from the cheapest classes as often as possible, while satisfying the randomness
requirements. We will prove below that this greedy approach in fact yields an
improvising distribution whenever one exists.

Toy Example. We will begin with a toy example which illustrates the idea and
correctness of the greedy construction. Suppose we want to sample from words
of length 3 (m = n = 3) over the binary alphabet Σ = {0, 1}, subject to the
hard constraint that each word must contain at least one 1. We will have two
label classes: words with an odd number of 1s will be in label 1, and those with
an even number in label 2. The cost of each word will be its integer value in

Randomized Synthesis for Diversity and Cost Constraints with CI 9

binary. The label parameters will be λ = 0.2 and ρ = 1.0, so that each label
must be sampled from with a probability at least 0.2 and at most 1.0. The word
randomness parameters will be α̂1 = α̂2 = 0.1 and β̂1 = β̂2 = 0.5, so that when
sampling from a particular label class, each word in the class must be selected
with probability at least 0.1 and at most 0.5.

Figure 2 shows the greedy construction applied to this LQCI instance. Begin-
ning with label 1, we need to construct a probability distribution over the words
001, 010, 100, and 111. We start by assigning 0.1 to each word, since α̂1 = 0.1.
Then we assign as much additional probability as we can (up to β̂1 = 0.5) to
the cheapest words first until a total of 1 is reached, as shown in the bottom left
of Fig. 2. The result is that there are 3 distinct probabilities within the label
class: the minimum α̂1 = 0.1, the maximum β̂1 = 0.5, and the overflow prob-
ability 0.3 on the word 010. This process results in a distribution over label 1
with expected cost 2.2, the minimum achievable while satisfying the randomness
over words constraint. A similar process yields a distribution of expected cost
4.1 on label 2. Now that we know the minimum expected cost for each label, we
should sample from the cheaper label as frequently as possible. Since λ = 0.2
and ρ = 1.0, we sample from label 2 with probability 0.2 (the minimum allowed)
and from label 1 with probability 0.8, yielding a distribution over improvisations
with expected cost 2.58. Our analysis will show that this is in fact the minimum
possible expected cost over all distributions satisfying conditions (1), (3), and (4)
in Def. 2. So if the cost bound c in the LQCI instance is at least this large, then
we have an improvising distribution, and otherwise the instance is infeasible.

We now describe the two phases of our construction formally.

The Greedy Cost Construction. For a particular label class i ∈ {1, . . . , |Ω|},
we proceed as follows. Let δi = (δi1, . . . , δ

i
|Θ|) be a list of all the cost classes Ii,k

with label i, sorted in increasing order of cost. Then fix oi =
1−α̂i|Ii|
β̂i−α̂i

, whose floor

is the maximum number of words that can be assigned β̂i probability (the max-
imum allowed) while still leaving at least α̂i probability (the minimum allowed)
for each remaining word. Then, moving through the cost classes in the order
given by δi, we assign β̂i probability to each word in the class, until we get to a
class δir where the cumulative number of words so far (including the new class)

would exceed oi. To this class we assign β̂i(oi −
∑r−1

k=1 |δik|) + α̂i(
∑r

k=1 |δik| − oi)
probability (spread uniformly over words in the class), the maximum allowed
while leaving exactly α̂i for each remaining word. Assigning α̂i to the remaining
words, we obtain a distribution Di over the whole label class Ii.

We note that this process is not well-defined when α̂i = β̂i (in which case we
simply assign probability α̂i to every word in Ii) or when α̂i|Ii| > 1 (in which
case the instance is infeasible due to α̂i being too large); also, the process does

not result in a probability distribution if β̂i|Ii| < 1 (in which case the instance is

infeasible due to β̂i being too small). Except in these cases, we get a well-defined
distribution Di over Ii which satisfies conditions (1) and (4) of Def. 2. Moreover,
the expected cost of Di is minimal among all such distributions, since it assigns
as much weight as possible to the words with lowest cost.

10 A. Gittis*, E. Vin*, and D. J. Fremont

L1
L1
L2
L1
L2
L2
L1

k=1
k=2
k=3
k=4
k=5
k=6
k=7

000
001
010
011
100
101
110
111

Word Label Cost

001 010 100 111 011 101 110

L1 L2

D
0.8 0.2

0.5
0.3 0.1

0.1 0.5
0.4

0.1

L1
2.2
0.8

L2
4.1
0.2Pr =

E[k] =

001
1

0.5

010
2

0.3

100
4

0.1

111
7

0.1

011
3

0.5

110
6

0.1

101
5

0.4

L1 L2

Minimum Marginal Probability (λ)

Additional Marginal Probability (Up to ρ)
Minimum Conditional Probability (α)
Additional Conditional Probability (Up to β)

Pr =
k =

Fig. 2: Applying the greedy LQCI construction to our toy example. Counter-
clockwise from upper left: table of improvisations, the greedy cost construction,
the greedy label construction, and the final improvising distribution.

The Greedy Label Construction. Given the distributions Di for each label
class Ii from the first stage, we now choose a distribution over labels. Following
a similar pattern as before, let δ be a list of the distributions Di sorted in order

of increasing expected cost. Then fix u = ⌊ 1−|Ω|λ
ρ−λ ⌋, which is the number of label

classes that can be assigned probability ρ (the maximum allowed) while still
leaving at least λ (the minimum allowed) for each remaining class. We assign
ρ probability to the first u label classes in δ. To the next label class we assign
probability 1−ρu−λ(|Ω|−u−1), the maximum allowed while leaving exactly λ
for each remaining label class. Finally, we assign λ to all remaining label classes,
and call the resulting distribution over labels D̂. Similar to before, this process
will be well-defined and result in a distribution when 1

ρ ≤ |Ω| ≤
1
λ ; otherwise, ρ

is too small or λ is too large for condition (3) of Def. 2 to be satisfied.

To complete the construction, we obtain a final distribution D over words
by first sampling a label i from D̂ and then sampling from Di. The greedy cost
construction ensured that Di is defined over the class Ii ⊆ I and assigns proba-
bility between α̂i and β̂i to each word, so D will satisfy the hard and randomness
over words constraints in Def. 2. The greedy label construction ensures that D̂
assigns probability between λ and ρ to each label, so D will also satisfy the ran-

Randomized Synthesis for Diversity and Cost Constraints with CI 11

domness over labels constraint. Finally, since each phase selects a distribution
of minimal cost amongst those satisfying the corresponding constraints, if any
improvising distribution exists then D will have no greater cost, thereby satisfy-
ing the cost constraint and being an improvising distribution. Formalizing this
argument yields the following theorem (see the Appendix for a detailed proof):

Theorem 1. An LQCI instance is feasible if and only if all of the following
conditions are true:

1.
1

ρ
≤ |Ω| ≤ 1

λ

2. ∀i ∈ {1, . . . , |Ω|}, 1

β̂i

≤ |Ii| ≤
1

α̂i

3. The greedy LQCI construction produces a distribution D whose expected cost
is at most c (i.e., E[K(w) | w ← D] ≤ c).

We conclude this section with a reminder that the greedy LQCI construction
is a construction and not a practical algorithm: it defines a distribution but not
a practical way to compute it for a specified LQCI instance. With common spec-
ification formalisms such as DFAs and Boolean formulas, the number of possible
improvisations can easily be exponential in the size of the problem instance. In
this case, assigning probabilities to words one at a time as described above in
the abstract construction would be highly impractical. Instead, the algorithms
we present in the following sections are able to avoid enumerating exponentially-
large sets by working with implicit representations to create distributions equal
to or approximating the one produced by the greedy LQCI construction.

4 Exact LQCI for Automata Specifications

The greedy LQCI construction from Sec. 3 gives us a way to determine if an LQCI
instance is feasible and, if so, to build an improvising distribution. Implementing
the construction requires several operations—such as computing the size of the
label/cost classes—which may or may not be tractable depending on the types
of specification used in the instance. In this section, we will identify a sufficient
list of operations which yield an efficient generic improvisation scheme for any
class of LQCI instances with specifications supporting these operations. Then
we will instantiate the scheme for two natural classes of specifications given by
deterministic finite automata, obtaining efficient improvisation algorithms.

Following the description of the preceding section, we can see that for a given
LQCI instance, the operations listed below are sufficient to complete the greedy
LQCI construction and sample from the resulting distribution:

Definition 3. (Sufficient Operations) Given an LQCI instance C:

1. Compute the list of possible costs Θ.
2. For each i ∈ {1, . . . , |Ω|} and k ∈ Θ, compute |Ii,k|.
3. For each i ∈ {1, . . . , |Ω|} and k ∈ Θ, sample uniformly from Ii,k.

12 A. Gittis*, E. Vin*, and D. J. Fremont

If we can implement these operations in polynomial time, we can build a
polynomial-time improvisation scheme in the sense of [17,18], i.e., an algorithm
which solves the LQCI problem in polynomial time, and whose generated impro-
visers themselves run in polynomial (expected) time. To do this we first compute
the list of possible costs and the size of each Ii,k. We then perform a modified ver-
sion of the greedy construction which assigns probabilities to entire cost classes
instead of individual words. As each word in a class has the same label and cost,
we can satisfy our cost and randomness requirements with a distribution that
assigns the same probability to every word within a class. Then to implement
placing probability p on each word of Ii,k without enumerating this potentially
exponentially-large set, we simply choose the set with probability p|Ii,k| and
then sample uniformly from it (see the Appendix for a detailed argument).

Theorem 2. Suppose for a class of LQCI instances the operations in Def. 3
can be performed in polynomial time (in the size of the instance). Then there is
a polynomial-time improvisation scheme for that class.

One broad class of specifications to which this scheme can apply is determin-
istic finite automata (DFAs): for example, we can encode the specifications from
our robotic planning example as DFAs. While a DFA can encode the hard speci-
fication H directly, encoding cost and label functions is not as clear. We consider
two natural encodings: most simply, we can label each state of the DFA with an
integer, assigning the associated label/cost to words ending at that state.

Theorem 3. Consider the class of LQCI instances where H is a DFA, K and
L are given by DFAs which output an integer cost/label associated with the state
they end on, the length bounds are given in unary and all other numerical pa-
rameters in binary. This class has a polynomial-time improvisation scheme.

Proof (Sketch). Operation (1) is trivial. For (2) and (3), we can easily construct
DFAs accepting all improvisations with a given label and cost, then apply clas-
sical techniques for counting/sampling from the language of a DFA [23]. ⊓⊔

To capture cost functions like path length or mission time (as in our planning
example), we consider a second encoding using weighted DFAs: states are again
labeled with integers, but the cost is now given by accumulating costs from
every state passed through. Here, the number of possible costs can grow linearly
with the largest cost of a single state, and so be exponential in the size of the
(binary) encoding; as a result we only obtain a pseudopolynomial improvisation
scheme by applying Thm. 2. The algorithm can still be feasible, however, when
the magnitude of possible costs is not too large, as we will see in Sec. 7.

Theorem 4. Consider the class of LQCI instances as in Thm. 3 but where K
is given by a weighted DFA, i.e. summing the integer costs associated with each
state of a DFA accepting path (with multiplicity). This class has a pseudopoly-
nomial improvisation scheme.

Randomized Synthesis for Diversity and Cost Constraints with CI 13

Proof (Sketch). We can perform operation (1) by dynamic programming over
the states and word lengths up to the length bound n. If the maximum cost of
a state in the DFA for K is M , then the cost of an improvisation is at most
M(n + 1); so for (2) and (3) we can build DFAs of size poly(M,n) recognizing
Ii,k and then apply counting/sampling as above. If state costs were encoded
in unary, the operations above would take polynomial time and Thm. 2 would
apply. Converting from binary to unary yields a pseudopolynomial scheme. ⊓⊔

5 Approximate LQCI for Symbolic Specifications

The LQCI algorithms for DFAs that we developed in the previous section cover
many useful specifications; however, as we will see in Sec. 7, even fairly simple
specifications can require very large automata when represented explicitly. In
this section we propose an algorithm that avoids such blowup by working with
symbolic specifications given by Boolean formulas. We cannot use our scheme of
Thm. 2 directly, because counting the number of solutions of a Boolean formula
is #P-hard. Nevertheless, we will show that by leveraging recent advances in
SAT solving, we can approximately solve LQCI to any desired accuracy.

We consider LQCI instances with specifications given by Boolean formulas,
whose variables encode traces and costs; for modeling convenience, we also allow
a vector of auxiliary variables z. Specifically, we assume we are given:

– a conjunctive normal form (CNF) formula h(x, z) such that ∃z.h(x, z) holds
if and only if the bitvector x encodes a trace satisfying the hard constraint;

– a CNF formula ℓ(x, y, z) such that ∃z.ℓ(x, y, z) holds if and only if trace x
has the label encoded by the bitvector y;

– a CNF formula k(x, y, z) such that ∃z.k(x, y, z) holds iff trace x has cost y
(a positive integer).

We further assume that the instance has only a polynomial number of labels,
although there can be exponentially-many costs.

Given such an instance, we can readily build a CNF formula ϕi(x, y, z) which
is satisfiable iff x encodes a word which has length between m and n, satisfies the
hard constraint, belongs to label i, and has cost y. The solutions x for a particular
choice of i and y comprise the associated cost class, so that the operations we
need for the greedy construction are instances of the model counting and uniform
generation problems for SAT.2 Recent work has yielded practical algorithms
based on SAT solvers which solve these problems approximately [8,28]3:

Definition 4. ([8]) An approximate counter is a probabilistic algorithm C which
given a CNF formula F with set of solutions RF , a tolerance τ > 0, and a

2 Since we do not want to count over the auxiliary variables z, we actually require
projected counting/sampling, which the algorithms we use can also perform [8,18].

3 We note that UniGen [8,6] is not strictly speaking an almost-uniform generator as in
Def. 4 since it only supports sufficiently-large tolerances; for theoretical results, one
can substitute the algorithm of [4] to do exact (projected) uniform sampling.

14 A. Gittis*, E. Vin*, and D. J. Fremont

confidence 1− δ ∈ [0, 1) guarantees that

Pr [|RF |/(1 + τ) ≤ C(F, τ, 1− δ) ≤ (1 + τ)|RF |] ≥ 1− δ.

An almost-uniform generator G is a probabilistic algorithm that, given F as above
and a tolerance ϵ > 0, guarantees that for every y ∈ RF , we have

1/((1 + ϵ)|RF |) ≤ Pr[G(F, ϵ) = y] ≤ (1 + ϵ)/|RF |.

We can modify our greedy construction to work with only approximate count-
ing/sampling as follows. If the cost bitvector has |y| bits, the cost of a word
is between 1 and 2|y|. To avoid enumerating exponentially-many cost classes
for label i, we group words into “cost buckets” by subdividing this interval
into powers of r for some r > 1, i.e. [1, r), [r, r2), . . . , [rb−1, rb). We will have
b = O(logr(2

|y|)) = O(|y|/ log r) buckets, and we can estimate the size of bucket
j by approximately counting solutions to ∃z.[ϕi(x, y, z) ∧ (rj ≤ y < rj+1)]. We
will then use these estimates to choose a distribution over buckets, following
the intuition of the greedy cost construction that we should assign the most
probability to buckets with lowest estimated cost, but with some adjustments
to bound the error that approximate sampling introduces.

For each label class i with randomness parameters α and β, we apply a
modified form of the greedy cost construction, shown in Algorithm 1. We start
in lines 1-3 by using model counting as above (with a tolerance τ and confidence
1− δ to be specified later) to find estimates ck of the size of each bucket k, and
corresponding lower bounds pk on how much probability the bucket would have
received in the exact greedy construction (the extra 1 + τ factor accounting for
possibly overestimating the size of the bucket). If these lower bounds total more
than 1, then we know there are too many improvisations for the instance to be
feasible (assuming the model counts are within their tolerance) and we return
false on line 4. Otherwise, on lines 5-7 we proceed as in the greedy construction,
starting from the cheapest bucket, increasing the assigned probability per word
to (1 + τ)β until a probability of 1 is reached. The factor of 1 + τ ensures that,
even if the model counts have underestimated the size of the cheaper buckets, we
still assign them at least as much probability as the exact greedy construction
would. Next, line 8 checks if there are too few improvisations, similarly to line
4. Finally, we return our distribution over buckets, as well as a lower bound on
its expected cost that we will use next.

If Algorithm 1 does not return false for any label class, then we complete
our approximate LQCI algorithm by running the greedy label construction from
Sec. 3, using the lower bounds from Algorithm 1 as the expected cost of each
label class. As before, we declare the instance infeasible if the construction fails or
if its expected cost exceeds the cost bound c. Otherwise, we obtain a distribution
over all the cost buckets; our improviser then simply chooses a bucket from this
distribution and applies almost-uniform sampling to sample a word from it.

Choosing the bucket count and counting/sampling tolerances appropriately,
our algorithm can approximate an improvising distribution to within arbitrarily-
small multiplicative error, using polynomially-many calls to a SAT solver:

Randomized Synthesis for Diversity and Cost Constraints with CI 15

Algorithm 1 ApproximateGreedyCost(i, α, β, r, b, τ, δ)

1: for k = 1 to b do
2: ck := #SAT (∃z.ϕi(x, y, z) ∧ (rk−1 ≤ y < rk), τ, 1− δ)
3: pk := αck/(1 + τ)

4: if
∑b

j=1 pj > 1 then return False
5: for k = 1 to b do
6: pk := min((1 + τ)βck, 1−

∑
j ̸=k pj)

7: if
∑b

j=1 pj = 1 then break

8: if
∑b

j=1 pj < 1 then return False

9: Lo :=
∑b

j=1 pjr
j−1

10: return {pj}bj=1, Lo

Theorem 5. There is an algorithm which, given a Boolean LQCI instance C,
a cost tolerance ζ > 0, a randomness tolerance γ > 0, and a confidence 1− δ ∈
[0, 1), runs in poly(|C|, 1/ζ, 1/γ, log(1/δ)) time relative to an NP oracle and either

returns ⊥ or an algorithm sampling from a distribution D̃ over words. With
probability at least 1− δ, if ⊥ is returned then C is infeasible, and otherwise:

1. Hard Constraint: Pr[H(w) | w ← D̃] = 1

2. Cost Constraint: E[K(w) | w ← D̃] ≤ (1 + ζ)c

3. Randomness over Labels: ∀i ∈ {1, . . . , |Ω|}, λ ≤ Pr [w ∈ Ii | w ← D̃] ≤ ρ
4. Randomness over Words: ∀i ∈ {1, . . . , |Ω|} ∀y ∈ Ii,

α̂i/(1 + γ) ≤ Pr[y = w | w ∈ Ii, w ← D̃] ≤ (1 + γ)β̂i

6 Maximum-Entropy LQCI

Our LQCI definition requires providing conditional probability bounds for every
label, which while allowing maximal control of the distribution, can be unwieldy
to use. However, if we drop conditional bounds entirely, trivial solutions with
unnecessarily-poor randomness can appear. For example, consider an LQCI in-
stance with parameters λ = 0.5, ρ = 0.5, α̂ = (0, . . . , 0), β̂ = (1, . . . , 1). With
this choice, any distribution will satisfy the randomness over words constraint,
and all labels have the same marginal probability of being selected. Then assume
that we have two labels, costs Θ = (1, 2), and cost bound c = 1.5, along with
the following cost class sizes: |I1,1| = 1, |I2,1| = 1, |I1,2| = 1000, |I2,2| = 1000.
Now simply assigning 50% probability to I1,1 and 50% probability to I2,1 is an
improvising distribution. Assigning 25% probability to all 4 classes is also an
improvising distribution, and clearly preferable from the perspective of random-
ness. Unfortunately, without a nontrivial randomness over words constraint, we
have no way to push the improviser to select the second distribution. To enforce
this, we introduce the concept of entropy from information theory.

Definition 5. Given a discrete random variable X with a set of outcomes Ω and
probabilities p : Ω → [0, 1], the entropy of X is H(X) = −

∑
x∈Ω p(x) lg p(x).

16 A. Gittis*, E. Vin*, and D. J. Fremont

To obtain a problem formulation that maximizes randomness without requir-
ing probability bounds for each class, we invoke the Principle of Maximum En-
tropy: amongst all improvising distributions (without a randomness over words
constraint), we should select the one with the highest entropy (as first proposed
for reactive CI in [31]). This yields a notion of Maximum-Entropy LQCI:

Definition 6. A Maximum-Entropy LQCI (MELQCI) instance is an LQCI in-

stance where α̂ = (0, . . . , 0) and β̂ = (1, . . . , 1). A τ -improviser for a MELQCI
instance C is an improviser (as in LQCI) whose output distribution has entropy
at most τ less than the maximum-entropy improvising distribution for C. We
define the MELQCI problem as, given an instance C and τ > 0, determining if
C is feasible, and, if so, generating a τ -improviser for C.

We can solve MELQCI efficiently in the same cases as LQCI:

Theorem 6. Given a class of MELQCI instances for which one can perform
the operations in Def. 3 in polynomial time, there is a polynomial-time algorithm
which given an instance from the class and a τ > 0, computes a τ -improviser.

Proof. (Sketch). Once cost class sizes have been computed as in Thm. 2, the
search for the desired distribution over cost classes can be formulated as an
optimization problem with a separable convex objective (the entropy of the
distribution) and linear constraints (improviser constraints). This problem can
be solved in time polynomial in the size of the instance and log(1/τ) [11].

As in Sec. 4, we can transform this algorithm into a pseudopolynomial scheme
for accumulated-cost DFA specifications.

7 Experiments

We ran several experiments on the robotic planning problems from Sec. 2 (code
available at [21]). These experiments aim to demonstrate that we can encode
practical problems as LQCI instances solvable using our algorithms, highlight
the relative advantages/disadvantages of our exact/approximate algorithms, and
show the necessity of the label function in ensuring meaningful randomness.

As a minimal experiment, we used a 6x6 grid world with a small range of costs
(0–3 per cell, 8–39 for paths); we compared against a 7x7 grid world with a much
larger range of costs (0–9 per cell, 38–137 for paths).4 We encoded the specifica-
tions in Sec. 2 both as DFAs for our exact LQCI and MELQCI algorithms, and as
Boolean formulas for our approximate LQCI algorithm. The Boolean encodings
were obtained by formulating the specifications in the SMT theory of bitvectors,
and bit-blasting them with Z3 [27]; the resulting formulas had several thousand
variables and tens of thousands of clauses. We used UniGen3 [28,8] for uniform

4 A larger 8x8 map exceeded our 24-hour wallclock timeout for all exact and approx-
imate experiments.

Randomized Synthesis for Diversity and Cost Constraints with CI 17

Table 1: Experiment parameters and improviser construction times (in minutes).

Map Problem Type (λ, ρ) (α̂i, β̂i) r γ δ Wall Time CPU Time

6x6

Exact QCI (0, 3e-5) (1, 1)
N/A

540 5568
Exact LQCI (0, 1e-5) (0.3, 0.4) 444 6102

Exact MELQCI N/A (0.3, 0.4) 444 6 6102

Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 102 0.2 23.7± 0.6 93.3± 1.4
Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 103 0.2 21.2± 0.7 81.5± 1.1
Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 104 0.2 20.2± 0.7 78.4± 3.4

7x7

Exact QCI (0, 3e-5) (1, 1)
N/A

Timed out
(24-hour wall time)

Exact LQCI (0, 1e-5) (0.3, 0.4)
Exact MELQCI N/A (0.3, 0.4)

Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 102 0.2 42.8± 2.1 186.1± 3.9
Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 103 0.2 38.8± 8.8 152.6± 9.0
Approx. LQCI (0, 1e-5) (0.3, 0.4) 1.2 104 0.2 38.8± 9.7 145.5± 9.5

generation with its default tolerance5 of 17, and an in-development version of
ApproxMC [28,9,29] for approximate model counting with tolerances of 1.4, 6.7,
and 23.25, so that the overall γ values were 102, 103, and 104. To put these values
into context, the small/large maps had on the order of 107/109 improvisations,
and we required that no word have > ρ = 10−5 probability of being selected.
Therefore, with our tightest/loosest γ we are guaranteed that no word will be
more than 0.1%/10% of the distribution respectively. The confidence was set to
0.8 (δ = 0.2), ApproxMC’s default confidence. Each model counting call however
required a much higher confidence to achieve an overall δ of 0.2.

For the small/large maps respectively we used length bounds of (1,25)/(1,30)
and cost bounds of 30/50. We used label probability bounds of (0.3, 0.4) through-
out, except for unlabeled “QCI” experiments. The experiments were run on a
64-core machine with 188 GB of RAM; we used 62 parallel threads, unless this
exhausted RAM, in which case we used 16 threads. The experiments are sum-
marized in Tab. 1; due to significant runtime variability for the approximate
experiments, we report means and standard deviations over 10 repetitions. For
all exact experiments which completed within the 24-hour wallclock timeout,
RAM usage was ≤ 6 GB per thread, and the average time to sample an impro-
visation was ≤ 1 ms; all approximate experiments required ≤ 250 MB RAM per
thread and took ∼ 20 s to sample an improvisation.

We can draw several conclusions from these results. Improviser construction
with the exact algorithm is significantly more expensive than with the approxi-
mate algorithm, in both CPU time and RAM. This is not surprising, as the exact
encodings resulted in enormous DFAs which, for the large map, approached 1010

5 UniGen3 cannot guarantee a multiplicative error of less than 7.48 [6]; see footnote 3.
6 The LQCI/MELQCI runtimes were nearly identical, since MELQCI reuses the LQCI
computations and adds a convex optimization step, which took negligible time.

18 A. Gittis*, E. Vin*, and D. J. Fremont

(a) QCI Traces (b) MELQCI Traces

Fig. 3: Randomly-selected traces generated by the QCI/MELQCI improvisers for
the 6x6 map. Note that all the QCI traces use the same charging station.

states. Conversely, sampling is much faster for the exact algorithm, with no SAT
queries required. We can also see that the approximate algorithm can be used
to practically solve problems that are infeasible to solve exactly, such as the
large-map problem. We expect new developments in the relatively young field of
approximate model counting/sampling will further speed up our algorithm.

Visualizing several randomly-chosen traces from our exact QCI and MELQCI
experiments in Fig. 3, we can see the importance of labels. In unlabeled QCI,
the robot always charged at the substation near the main road due to the lower
expected cost of such paths. In contrast, MELQCI yielded a near-uniform dis-
tribution over the charging stations. This increase in diversity was not free, with
the average cost rising to 21.4 for MELQCI from 8.7 for QCI. This trade-off
demonstrates how LQCI allows us to balance the need for control over our im-
provisations with the need for meaningful diversity (not merely randomness) by
choosing appropriate label functions.

8 Conclusion

In this paper, we introduced labelled quantitative control improvisation as a
framework allowing correct-by-construction synthesis of randomized systems whose
behavior must be diverse with respect to a label function and near-optimal with
respect to a cost function. We studied the theory of LQCI problems and de-
veloped algorithms for solving them for broad classes of specifications encoded
as finite automata or Boolean formulas. Our experiments demonstrated how our
framework can be used to formalize and solve realistic robotic planning problems.

There are a number of clear directions for future work. Scalability is an
evident concern: our experiments show that our algorithms can require substan-
tial resources to solve even relatively small LQCI problems. While LQCI with
Boolean formulas is a difficult #P-hard problem, our algorithms will directly
benefit from future progress in model counting; our DFA algorithms could also

Randomized Synthesis for Diversity and Cost Constraints with CI 19

be improved through the use of abstraction to reduce state-space explosion. We
also plan to explore generalizations of our algorithms, such as extending our ap-
proximate scheme to MELQCI and to problems with exponentially-many labels,
as well as potentially infinite traces. Finally, we are investigating extensions of
the LQCI problem to reactive settings with adversarial environments, and to
black-box settings for design-space exploration and other problems where we do
not have complete models for the cost function and other constraints.

Acknowledgements. The authors thank Skyler Stewart for designing Fig. 2,
and several anonymous reviewers for their helpful comments. This work was
supported in part by DARPA contract FA8750-20-C-0156 (SDCPS).

References

1. Akkaya, I., Fremont, D.J., Valle, R., Donzé, A., Lee, E.A., Seshia, S.A.: Control
improvisation with probabilistic temporal specifications. In: First IEEE Interna-
tional Conference on Internet-of-Things Design and Implementation, IoTDI 2016,
Berlin, Germany, April 4-8, 2016. pp. 187–198. IEEE Computer Society (2016).
https://doi.org/10.1109/IoTDI.2015.33, https://doi.org/10.1109/IoTDI.2015.33

2. Almagor, S., Kupferman, O.: High-Quality Synthesis Against Stochastic
Environments. In: Talbot, J.M., Regnier, L. (eds.) 25th EACSL Annual
Conference on Computer Science Logic (CSL 2016). Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), vol. 62, pp. 28:1–28:17. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2016).
https://doi.org/10.4230/LIPIcs.CSL.2016.28, http://drops.dagstuhl.de/opus/
volltexte/2016/6568

3. Baier, C., Brázdil, T., Größer, M., Kučera, A.: Stochastic game logic. Acta infor-
matica pp. 1–22 (2012)

4. Bellare, M., Goldreich, O., Petrank, E.: Uniform generation of NP-witnesses using
an NP-oracle. Inf. Comput. 163(2), 510–526 (2000)

5. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. In: Proceedings of the 6th Interna-
tional Workshop on Compiler Optimization meets Compiler Verification (COCV
2007). Electronic Notes in Theoretical Computer Science, vol. 190, pp. 3–16. El-
sevier (2007). https://doi.org/http://dx.doi.org/10.1016/j.entcs.2007.09.004, http:
//www.sciencedirect.com/science/article/pii/S157106610700583X

6. Chakraborty, S., Fremont, D.J., Meel, K.S., Seshia, S.A., Vardi, M.Y.: On parallel
scalable uniform SAT witness generator. In: Proceedings of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS). pp. 304–319 (4 2015)

7. Chakraborty, S., Meel, K.S., Vardi, M.Y.: A scalable approximate model counter.
In: Proceedings of International Conference on Constraint Programming (CP). pp.
200–216 (9 2013)

8. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Balancing scalability and uniformity in
sat-witness generator. In: Proceedings of Design Automation Conference (DAC).
pp. 60:1–60:6 (6 2014)

9. Chakraborty, S., Meel, K.S., Vardi, M.Y.: Algorithmic improvements in approxi-
mate counting for probabilistic inference: From linear to logarithmic sat calls. In:
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI) (7
2016)

https://doi.org/10.1109/IoTDI.2015.33
https://doi.org/10.1109/IoTDI.2015.33
https://doi.org/10.4230/LIPIcs.CSL.2016.28
http://drops.dagstuhl.de/opus/volltexte/2016/6568
http://drops.dagstuhl.de/opus/volltexte/2016/6568
https://doi.org/http://dx.doi.org/10.1016/j.entcs.2007.09.004
http://www.sciencedirect.com/science/article/pii/S157106610700583X
http://www.sciencedirect.com/science/article/pii/S157106610700583X

20 A. Gittis*, E. Vin*, and D. J. Fremont

10. Chen, T., Forejt, V., Kwiatkowska, M., Simaitis, A., Wiltsche, C.: On stochastic
games with multiple objectives. In: Chatterjee, K., Sgall, J. (eds.) Mathematical
Foundations of Computer Science 2013. pp. 266–277. Springer Berlin Heidelberg,
Berlin, Heidelberg (2013)

11. Chubanov, S.: A polynomial-time descent method for separable convex optimiza-
tion problems with linear constraints. SIAM Journal on Optimization 26(1),
856–889 (2016). https://doi.org/10.1137/14098524x

12. Denise, A., Gaudel, M.C., Gouraud, S.D., Lassaigne, R., Oudinet, J., Peyronnet,
S.: Coverage-biased random exploration of large models and application to test-
ing. International Journal on Software Tools for Technology Transfer 14(1), 73–93
(2011). https://doi.org/10.1007/s10009-011-0190-1

13. Donze, A., Libkind, S., Seshia, S.A., Wessel, D.: Control improvisation with ap-
plication to music. Tech. Rep. UCB/EECS-2013-183, EECS Department, Uni-
versity of California, Berkeley (Nov 2013), http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2013/EECS-2013-183.html

14. Donzé, A., Valle, R., Akkaya, I., Libkind, S., Seshia, S.A., Wessel, D.: Machine
improvisation with formal specifications. In: Music Technology meets Philosophy -
From Digital Echos to Virtual Ethos: Joint Proceedings of the 40th International
Computer Music Conference, ICMC 2014, and the 11th Sound and Music Com-
puting Conference, SMC 2014, Athens, Greece, September 14-20, 2014. Michigan
Publishing (2014), http://hdl.handle.net/2027/spo.bbp2372.2014.196

15. Finkbeiner, B.: Synthesis of reactive systems. In: Esparza, J., Grumberg, O., Sick-
ert, S. (eds.) Dependable Software Systems Engineering. NATO Science for Peace
and Security Series, D: Information and Communication Security, vol. 45, pp. 72–
98. IOS Press, Amsterdam, Netherlands (2016)

16. Fremont, D.J.: Algorithmic improvisation. Thesis (2019), https://www2.eecs.
berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf

17. Fremont, D.J., Donzé, A., Seshia, S.A., Wessel, D.: Control Improvisation. In:
Harsha, P., Ramalingam, G. (eds.) 35th IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS
2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 45, pp.
463–474. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2015). https://doi.org/10.4230/LIPIcs.FSTTCS.2015.463, http://drops.dagstuhl.
de/opus/volltexte/2015/5659

18. Fremont, D.J., Donzé, A., Seshia, S.A.: Control improvisation (2017), https://
arxiv.org/abs/1704.06319

19. Fremont, D.J., Dreossi, T., Ghosh, S., Yue, X., Sangiovanni-Vincentelli, A.L.,
Seshia, S.A.: Scenic: a language for scenario specification and scene gen-
eration. In: McKinley, K.S., Fisher, K. (eds.) Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019. pp. 63–78.
ACM (2019). https://doi.org/10.1145/3314221.3314633, https://doi.org/10.1145/
3314221.3314633

20. Fremont, D.J., Seshia, S.A.: Reactive control improvisation. In: Chockler, H.,
Weissenbacher, G. (eds.) Computer Aided Verification - 30th International Con-
ference. Lecture Notes in Computer Science, vol. 10981, pp. 307–326. Springer
(2018). https://doi.org/10.1007/978-3-319-96145-3 17, https://doi.org/10.1007/
978-3-319-96145-3 17

21. Gittis, A., Vin, E., Fremont, D.J.: Randomized synthesis for diversity and cost
constraints with control improvisation (artifact), https://doi.org/10.5281/zenodo.
6558391

https://doi.org/10.1137/14098524x
https://doi.org/10.1007/s10009-011-0190-1
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
http://hdl.handle.net/2027/spo.bbp2372.2014.196
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://doi.org/10.4230/LIPIcs.FSTTCS.2015.463
http://drops.dagstuhl.de/opus/volltexte/2015/5659
http://drops.dagstuhl.de/opus/volltexte/2015/5659
https://arxiv.org/abs/1704.06319
https://arxiv.org/abs/1704.06319
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1145/3314221.3314633
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.5281/zenodo.6558391
https://doi.org/10.5281/zenodo.6558391

Randomized Synthesis for Diversity and Cost Constraints with CI 21

22. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
aspects of computing 6(5), 512–535 (1994)

23. Hickey, T., Cohen, J.: Uniform random generation of strings in a context-
free language. SIAM Journal on Computing 12(4), 645–655 (1983).
https://doi.org/10.1137/0212044

24. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, lan-
guages, and computation, 3rd Edition. Pearson international edition, Addison-
Wesley (2007)

25. Kozierok, C.M.: The TCP/IP guide, http://tcpipguide.com/free/
t TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm, accessed:
2022-1-21

26. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Transactions on Robotics 25(6), 1370–1381 (2009)

27. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of Sys-
tems. pp. 337–340. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

28. Soos, M., Gocht, S., Meel, K.S.: Tinted, detached, and lazy CNF-XOR solving
and its applications to counting and sampling. In: Proceedings of International
Conference on Computer-Aided Verification (CAV) (7 2020)

29. Soos, M., Meel, K.S.: Arjun: An efficient independent support computation tech-
nique and its applications to counting and sampling. CoRR abs/2110.09026
(2021), https://arxiv.org/abs/2110.09026

30. Sutton, M., Greene, A., Amini, P.: Fuzzing: Brute Force Vulnerability Discovery.
Addison-Wesley (2007)

31. Vazquez-Chanlatte, M., Junges, S., Fremont, D.J., Seshia, S.: Entropy-guided
control improvisation (2021). https://doi.org/10.15607/RSS.2021.XVII.051, https:
//doi.org/10.15607/RSS.2021.XVII.051

https://doi.org/10.1137/0212044
http://tcpipguide.com/free/t_TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm
http://tcpipguide.com/free/t_TCPOperationalOverviewandtheTCPFiniteStateMachineF-2.htm
https://arxiv.org/abs/2110.09026
https://doi.org/10.15607/RSS.2021.XVII.051
https://doi.org/10.15607/RSS.2021.XVII.051
https://doi.org/10.15607/RSS.2021.XVII.051

22 A. Gittis*, E. Vin*, and D. J. Fremont

A Proofs

Theorem 1 Full Proof

Proof. First, we verify that when conditions (1) and (2) of the Theorem hold, the
greedy LQCI construction defines a valid probability distribution. Since proba-
bility of words under Di is uniform within a cost class, we will use an abuse of
notation to apply Di to cost classes as well, to be understood as the sum of the
probabilities of the words in that cost class. As described, if cost class Ii,k has
index j in the sorted list δi (i.e., Ii,k = δij), then our distribution Di over the
cost classes for label i assigns it probability as follows:

Di(Ii,k) = Di(δ
i
j) =

β̂i|δij | j < r

β̂i(oi −
∑r−1

k=1 |δik|) + α̂i(
∑r

k=1 |δik| − oi) j = r

α̂i|δij | j > r

(recalling that r ≥ 1 is defined to be the least index such that
∑r

k=1 |δik| > oi, if
one exists; otherwise we may set r = |Θ|+ 1).

The distribution over label classes is given as follows, if label class Ii has
index j in the sorted list δ (i.e. Ii = δj):

D̂(Ii) = D̂(δj) =

ρ j ≤ u

1− ρu− λ(|Ω| − u− 1) j = u+ 1

λ j > u+ 1

Since the sets Ii partition I and the sets Ii,k partition Ii, we now construct a
unified distribution over all our words by combining our marginal and conditional
distributions, again with assumed uniform probability within the cost classes, as
follows,

D(Ii,k) = D̂(Ii)Di(Ii,k)

However, for this to be well-defined we must show that D̂ and each Di are
valid probability distributions that sum to 1. For each Di, its probabilities are
nonnegative by the definition of r and the fact that oi = (1−α̂i|Ii|)/(β̂i−α̂i) ≥ 0
(due to our assumption that |Ii| ≤ 1/α̂i). The sum of the probabilities is:

∑
w∈Ii,k

D(w) = β̂i

r−1∑
k=1

|δik|+ β̂i(oi −
r−1∑
k=1

|δik|) + α̂i(

r∑
k=1

|δik| − oi) + α̂i

|Θ|∑
k=r+1

|δik|

= β̂ioi + α̂i

r∑
k=1

|δik| − α̂ioi + α̂i

|Θ|∑
k=r+1

|δik|

Randomized Synthesis for Diversity and Cost Constraints with CI 23

= β̂i
1− α̂i|Ii|
β̂i − α̂i

+ α̂i

r∑
k=1

|δik| − α̂i
1− α̂i|Ii|
β̂i − α̂i

+ α̂i

|Θ|∑
k=r+1

|δik|

= 1− α̂i|Ii|+ α̂i

r∑
k=1

|δik|+ α̂i

|Θ|∑
k=r+1

|δik|

= 1− α̂i|Ii|+ α̂i|Ii|
= 1

as desired. Note that in the case when α̂i = β̂i, as stated above we instead define
Di(δ

i
j) = α̂i|δij |: the probabilities are still nonnegative, and sum to 1 due to our

assumption that 1/β̂i ≤ |Ii| ≤ 1/α̂i, which forces |Ii| = 1/α̂i.
For D̂, its probabilities are nonnegative since we assume |Ω| ≤ 1/λ and so

1− ρu− λ(|Ω| − u− 1) = 1− (ρ− λ)u− λ|Ω|+ λ

= 1− λ|Ω| − (ρ− λ)

⌊
1− λ|Ω|
ρ− λ

⌋
+ λ

≥ λ ≥ 0.

The sum of the probabilities is:

|Ω|∑
i=1

D̂(Ii) = ρu+ [1− ρu− λ(|Ω| − u− 1)] + λ(|Ω| − u− 1)

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λu− ρu− λ|Ω|+ λ+ λ(|Ω| −

⌊
1− |Ω|λ
ρ− λ

⌋
− 1)

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λu− ρu− λ|Ω|+ λ+ λ|Ω| − λ

⌊
1− |Ω|λ
ρ− λ

⌋
− λ

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λu− ρu− λ

⌊
1− |Ω|λ
ρ− λ

⌋
= 1 + (ρ− λ)

⌊
1− |Ω|λ
ρ− λ

⌋
+ (λ− ρ)u

= 1 + (ρ− λ)

⌊
1− |Ω|λ
ρ− λ

⌋
+ (λ− ρ)

⌊
1− |Ω|λ
ρ− λ

⌋
= 1

again as desired. Note that in the case when λ = ρ, we instead define D̂(Ii) = λ:
the probabilities are still nonnegative, and sum to 1 due to our assumption that
1/ρ ≤ |Ω| ≤ 1/λ, which forces |Ω| = 1/λ.

As all our marginal and conditional distributions are well-defined probability
distributions, it follows that D is also a well-defined probability distribution.

Next we must show that a given LQCI instance is feasible if and only if all
of the following hold:

24 A. Gittis*, E. Vin*, and D. J. Fremont

1.
1

ρ
≤ |Ω| ≤ 1

λ

2. ∀i ∈ {1, . . . , |Ω|}, 1

β̂i

≤ |Ii| ≤
1

α̂i

3. The greedy LQCI construction produces a distribution D whose expected
cost satisfies E[K(w) | w ← D] ≤ c.

(⇐) If the above conditions hold, the LQCI instance is feasible.
We showed above that conditions (1) and (2) imply the greedy LQCI construc-
tion defines a valid distribution D. By construction, D only gives probability to
words contained in some cost class and therefore in I, so it satisfies the hard
constraint. Condition (3) states that D satisfies the cost constraint. By the defi-
nition of D̂, the probability of each label class is between λ and ρ, so D satisfies
the randomness over labels constraint. Finally, the definition of Di ensures that
the probability of each word in Ii is between α̂i and β̂i, so D satisfies the ran-
domness over words constraint. Therefore D is an improvising distribution, so
the LQCI instance is feasible.
(⇒) If the LQCI instance is feasible, the above conditions hold.
Assuming that the LQCI instance is feasible, and thus that there is an impro-
vising distribution, we will show that the above conditions hold. Let D′ be the
improvising distribution.

1.
1

ρ
≤ |Ω| ≤ 1

λ

Note that a probability distribution must sum to 1, and that a label class
must have between λ and ρ marginal probability of being selected in an
improvising distribution, so,

1 =

|Ω|∑
i=1

Pr[w ∈ Ii | w ← D′] ≤ ρ|Ω|

∴
1

ρ
≤ |Ω|

1 =

|Ω|∑
i=1

Pr[w ∈ Ii | w ← D′] ≥ λ|Ω|

∴ |Ω| ≤ 1

λ

As we can see, 1
ρ ≤ |Ω| ≤

1
λ .

2. ∀i ∈ {1, . . . , |Ω|}, 1

β̂i

≤ |Ii| ≤
1

α̂i

Again, note that a probability distribution must sum to 1, and that a word
must have between αi and βi conditional probability of being selected, so,

1 =
∑
w∈Ii

Pr[w | w ∈ Ii, w ← D′] ≤ β̂i|Ii|

Randomized Synthesis for Diversity and Cost Constraints with CI 25

∴
1

β̂i

≤ |Ii|

1 =
∑
w∈Ii

Pr[w | w ∈ Ii, w ← D′] ≥ α̂i|Ii|

∴ |Ii| ≤
1

α̂i

As we can see, 1
β̂i
≤ |Ii| ≤ 1

α̂i
.

3. The greedy LQCI construction satisfies the cost constraint.
We will first show that the greedy LQCI construction satisfies all the non-cost
LQCI constraints (hard constraint, randomness over words, and randomness
over labels). To begin with D samples exclusively over I, meaning that it
trivially satisfies the hard constraint.
We now show that D satisfies the randomness over words constraint. In
most cases this is trivially satisfied by having assigned α̂i or β̂i probability
to each word. The only exception is that for one cost class we assign β̂i(oi−∑r−1

k=1 |δik|) + α̂i(
∑r

k=1 |δik| − oi) probability. However, below we show that

we can bound this value to between α̂i|δik| and β̂i|δik|,

β̂i(oi −
r−1∑
k=1

|δik|) + α̂i(

r∑
k=1

|δik| − oi) ≥ α̂i(oi −
r−1∑
k=1

|δik|) + α̂i(

r∑
k=1

|δik| − oi) = α̂i|δir|

β̂i(oi −
r−1∑
k=1

|δik|) + α̂i(

r∑
k=1

|δik| − oi) ≤ β̂i(oi −
r−1∑
k=1

|δik|) + β̂i(

r∑
k=1

|δik| − oi) = β̂i|δir|

∴ α̂i|δir| ≤ β̂i(oi −
r−1∑
k=1

|δik|) + α̂i(

r∑
k=1

|δik| − oi) ≤ β̂i|δir|

Therefore each word is also assigned a probability between α̂i and β̂i.
We now show that D satisfies the randomness over labels constraint. Again,
in most cases this is trivially satisfied by assigning λ or ρmarginal probability
to each label class. The only exception is that for one label class we assign
1 − ρu − λ(|Ω| − u − 1) marginal probability. Below we show that we can
bound this value between λ and ρ.

1 + λk − ρk − |Ω|λ+ λ

= 1 + λ

⌊
1− |Ω|λ
ρ− λ

⌋
− ρ

⌊
1− |Ω|λ
ρ− λ

⌋
− |Ω|λ+ λ

= 1 + (λ− ρ)

⌊
1− |Ω|λ
ρ− λ

⌋
− |Ω|λ+ λ (Recall by definition λ ≤ ρ)

Then for some ι < 1 :

26 A. Gittis*, E. Vin*, and D. J. Fremont

≥ 1 + (λ− ρ)
1− |Ω|λ
ρ− λ

− |Ω|λ+ λ

= 1 + (λ− ρ)
|Ω|λ− 1

λ− ρ
− |Ω|λ+ λ

= 1 + |Ω|λ− 1− |Ω|λ+ λ

= λ

∴ 1 + λk − ρk − |Ω|λ+ λ ≥ λ

= 1 + (λ− ρ)

(
|Ω|λ− 1

λ− ρ
− ι

)
− |Ω|λ+ λ

= 1 + |Ω|λ− 1− ιλ+ ϵρ− |Ω|λ+ λ

= −ιλ+ ιρ+ λ

= ι(ρ− λ) + λ

< ρ− λ+ λ

= ρ

∴ 1 + λk − ρk − |Ω|λ+ λ < ρ

Thus all label classes receives between λ and ρ marginal probability.
We finally show that the cost constraint is satisfied by D. We will show this
via a transformation argument. Given that D′ is an improvising distribu-
tion, it must follow the randomness over words and randomness over labels
constraints. In addition, as the distribution within a cost class does not ef-
fect the cost, we will only compare D and D′ as distributions over the cost
classes. The greedy LQCI construction assigns as much conditional proba-
bility to the cost classes with the lowest cost as allowed by our randomness
over words requirement. Any more probability assigned to the lowest cost
classes would violate these requirements, and any less would result in an
equal or higher expected cost. Therefore, for each label ℓi, we could change
the conditional probability distributionD′

i to the corresponding one from the
greedy LQCI construction and have a lower or equal cost. We can perform a
similar transformation for the marginal label distribution. The Greedy LQCI
Construction assigns as much marginal probability to the label classes with
lower expected cost as is allowed by the Randomness over Labels constraint.
Again, any more probability to any of the lower cost label classes would
violate these requirements, and any less would result in an equal or higher
cost. Therefore, we can replace the marginal distribution in D′ with that
of D and have a lower or equal cost. Combining these two ideas, we can
see that for any improvising distribution D′, the D returned by the greedy
LQCI construction has lower or equal cost. As D′ has low enough cost to
be an improvising distribution and satisfy the cost constraint, D must also
satisfy the cost constraint. ⊓⊔

Since the cost-minimality of the greedy LQCI construction that we have just
shown will be useful later, we state it as a lemma:

Lemma 1. Let C be an LQCI instance. Then among distributions which satisfy
the hard constraint, randomness over words constraint, and randomness over
labels constraint (if they exist), the distribution returned by the greedy LQCI
construction has minimal expected cost.

Theorem 2 Full Proof

Proof. We recall the exact operations list in Def. 3:

Randomized Synthesis for Diversity and Cost Constraints with CI 27

1. Compute the finite list of possible costs Θ.
2. For each i ∈ {1, . . . , |Ω|} and each k ∈ Θ compute |Ii,k|.
3. For each i ∈ {1, . . . , |Ω|} and each k ∈ Θ, sample uniformly from the cost

class Ii,k.

The idea of the proof is to use the above operations to efficiently construct
the distribution returned by the greedy LQCI construction over the given pa-
rameters (or determine the instance is infeasible), find its expected cost, and (if
feasible) sample from it. Suppose we are given an LQCI instance from a class
where the operaions above can be performed in polynomial time. Because op-
eration (1) runs in polynomial time, the number of costs |Θ| must be at most
polynomial in the size of the instance (and of course the number of labels as
well since they are part of the instance). We can compute the size of each label
class Ii, of which there are polynomially many, using operations (1) and (2) to
measure each |Ii,k| and applying |Ii| =

∑
k∈Θ |Ii,k|. Along with the parameters

of the instance, this allows us to determine whether the first two conditions of
Theorem 1 hold. If not, then our algorithm returns that the instance is infeasi-
ble. Otherwise, for each label i, we follow the greedy cost construction outlined
in Section 3 to assign probabilities to each cost class of the label, and compute
the expected cost of the label class under those probabilities. This computation
requires evaluating a sum with a number of terms bounded by the number of
cost classes (which must be polynomial), so it is polynomial. Then we follow the
greedy label construction to assign a marginal probability to each label class, a
process which is also polynomial given the polynomial number of label classes.
Having now obtained a complete description of the greedy LQCI distribution, we
compute its expected cost and see if it satisfies the cost requirement. If it does
not, then by Theorem 1 the instance is infeasible. If it does, then the greedy
distribution is an improvising distribution. An improviser sampling from this
distribution can then work as follows: we randomly pick a cost class Ii,k with

the probability assigned by the greedy distribution (D̂(Ii)Di(Ii,k)), then apply
operation (3) to uniformly sample from it. This improviser runs in time polyno-
mial in the size of the LQCI instance, and constructing it took polynomial time,
so this procedure is a polynomial-time improvisation scheme. ⊓⊔

Theorem 3 Full Proof

Proof. Using classical algorithms for DFAs, we can uniformly count and sample
from the accepting words of a DFA of a particular length in time polynomial in
the length and the size of the DFA’s presentation [23], and we can create the
product DFA from two DFAs in time multiplicative in the size of each component
DFA [24]. The number of different costs is bounded by the number of accepting
states of the cost DFA, and so there are a linear number of elements in Θ which
we can obtain in linear time to implement operation (1). For each i ∈ {1, . . . , |Ω|}
(which we are given by the instance) and k ∈ {1, . . . , |Θ|} (just computed) we can
adjust the cost and label DFAs to accept only words of label i and cost k. Then we
can use the product construction to create a DFA which is the intersection of the
hard constraint DFA and this DFA. Then for each of the lengths between m and

28 A. Gittis*, E. Vin*, and D. J. Fremont

n (linearly-many since they are presented in unary), we can count the number
of accepting words of that length for this DFA in polynomial time to implement
operation (2). For operation (3), we can uniformly sample from this DFA in
polynomial time. So we can implement all operations required by Theorem 2 in
polynomial time, and therefore this class of LQCI instances has a polynomial-
time improvisation scheme. ⊓⊔

Theorem 4 Full Proof

Proof. First we treat the case where the values of the costs for each state are
encoded in unary, not binary. For operation (1), we apply a dynamic program-
ming approach. Let c(q, s) refer to the multiset of the costs of words of length
s that end in state q, and let k(q) be the cost associated with entering state
q. Initialize c(q, 0) = {k(q)} for the start state and c(q, 0) = ∅ for all other
states. Then build the table for c(q, s) for s > 0 according to the recursion
c(q, s) = k(q)+∪p∈Parent(q)c(p, s− 1), where addition is performed elementwise
on the multiset. In other words, you take the union of the multisets of the par-
ents of a state, and then add the cost of entering state q to every element of the
new multiset. The cost of the highest-cost word of length between m and n is
bounded by the cost M of the highest-cost state times n+1. Since the costs are
integers, the number of distinct costs is bounded by M(n + 1), and as M and
n are encoded in unary, this means that all the sets c(q, s) have size at most
polynomial in the size of the instance. Therefore computing these sets for all
states in the DFA and all lengths up to n takes polynomial time.

To create the DFA for the cost class Ii,k, we take the product of the hard
constraint DFA, the adjusted label DFA which only accepts label i, as well as a
DFA which accepts only words of cost k. This last DFA can be built by taking the
cost DFA and creating k+1 copies of each state to track the current accumulated
cost up to a limit of k+1. Since k is encoded in unary, the product DFA, whose
size is the product of its components, is polynomial in the size of the instance.
Counting and uniform sampling of words of the appropriate length from this DFA
is done in polynomial time as in Theorem 3 to implement operations (2) and
(3). So we can implement all operations required by Theorem 2 in polynomial
time, and therefore this class of LQCI instances (with costs encoded in unary)
has a polynomial-time improvisation scheme.

This immediately leads to the theorem, as moving from the binary encod-
ing of our hypothesis to the unary coding above results in a pseudopolynomial
scheme for the binary encoding. ⊓⊔

The following two lemmas will be used to prove Theorem 5.

Lemma 2. (Approximate Greedy Cost Algorithm) Given a Boolean-encoded LQCI
instance C and label class i with associated ϕi(x, y, z) and r as in Section 5, let
α and β be the randomness parameters for the label. Suppose approximate model
counts are performed with confidence 1−δ and tolerance τ . If Algorithm 1 returns
on line 10, let D be the distribution obtained by picking a bucket according to
the returned probabilities and then almost-uniformly sampling from that bucket

Randomized Synthesis for Diversity and Cost Constraints with CI 29

with tolerance ϵ (in this case we say “D exists”). Then with probability at least
(1− δ)b we will have the following guarantees:

1. If D exists, the expected cost of an item sampled from it satisfies Lo ≤
E[K(w) | w ← D] ≤ rLo.

2. If D exists, it assigns no word probability greater than (1 + ϵ)(1 + τ)2β or
less than α/(1 + ϵ)(1 + τ)2.

3. If Algorithm 1 returns False, then C is not feasible.
4. If any distribution D′ over label class i satisfies the randomness parameters

α, β (i.e. no word is sampled with probability less than α or more than β)
then Lo ≤ E[K(w) | w ← D′].

Proof. Since the approximate model counts are performed with confidence at
least 1− δ and tolerance τ and there are b model counts, then with probability
at least (1 − δ)b we have that for all j that if cj is the approximate count for
the j’th bucket and c′j the true count, then c′j/(1 + τ) ≤ cj ≤ (1 + τ)c′j . We will
assume this holds for the rest of the argument.

First observe that after being assigned in line (3), the pj ’s can only in-
crease or stay the same in (6): as α ≤ β is required by the LQCI instance,
αcj/(1 + τ) ≤ (1 + τ)βcj . Then in (6), each pj is either increased to (1 + τ)βcj ,
or is assigned 1−

∑
j ̸=k pj , whichever is less. Moreover, only one pj is assigned

1−
∑

j ̸=k pj since afterwards the sum of the pj ’s is 1 and the loop breaks. Suppose
now that at index s ≤ b, ps is assigned 1−

∑
j ̸=s pj . Then since after assignment

(
∑

j ̸=s pj) + αcs/(1 + τ) ≤ 1 but (
∑

j ̸=s pj) + ps = 1, we have ps ≥ αcs(1 + τ),
as desired.

Next we show that if the algorithm returns values for the pj ’s, they form
a distribution (which we call D), and that distribution’s expected cost satisfies
Lo ≤ E[K(w) | w ← D] ≤ rLo.

Since the algorithm did not terminate at (4), we know that
∑b

j=1 pj ≤ 1
at that point. Additionally, from (6) we know that when each pk re-appears, it
can raise the total sum of the pj ’s to at most 1 (because each is set to a value
≤ 1 −

∑
j ̸=k pk). Finally from (8) we know their sum cannot be less than 1, so

their sum must be exactly 1 to reach (9) - where Lo is assigned, and so the pj ’s
form a probability distribution.

Then if the algorithm returns a distribution, it has expected cost
∑b

j=1 pjr
′
j ,

where r′j is the expected cost of almost-uniformly sampling the elements in bucket

j (wherefore we must have rj−1 ≤ r′j < rj). Then we have Lo =
∑b

j=1 pjr
j−1 ≤∑b

j=1 pjr
′
j = E[K(w) | w ← D] ≤

∑b
j=1 pjr

j = rLo.

Next, we show that if the algorithm returned a distribution, no element will
be sampled with probability greater than (1 + τ)2(1 + ϵ)β, and no element will
be sampled with probability less than α/((1 + τ)2(1 + ϵ)).

As shown above, for all j, we have that αcj/(1 + τ) ≤ pj ≤ (1 + τ)βcj . If
we sampled exactly uniformly from a bucket with probability pj , the chance of

30 A. Gittis*, E. Vin*, and D. J. Fremont

sampling any particular element would be pj/c
′
j , where c′j is the true count of

bucket j. Then by the previous, we have αcj/((1+τ)c′j) ≤ pj/c
′
j ≤ (1+τ)βcj/c

′
j .

By our model counting argument in the first paragraph, we then have

α

(1 + τ)2
=

αcj
(1 + τ)2cj

≤ αcj
(1 + τ)c′j

≤ pj
c′j
≤ (1 + τ)βcj

c′j
≤ (1 + τ)βcj

cj/(1 + τ)
= (1+τ)2β,

showing that probability of sampling any particular element lies between α/(1+
τ)2 and (1 + τ)2β, with perfectly uniform sampling. Since in fact we perform
almost-uniform sampling with tolerance ϵ, this adds a multiplicative error of
(1 + ϵ) to each term.

Next we show that if the algorithm returned False, then LQCI instance is not
feasible. The algorithm can return False on lines (4) or (8). Suppose it returns

False on line (4). Then we have
∑b

j=1
α

1+τ cj > 1. An improvising distribution
would have to assign at least probability α to every element, and so would have
to assign at least

∑b
j=1 αc

′
j probability total. However, by our model counting

discussion earlier, we have
∑b

j=1 αc
′
j ≥

∑b
j=1

α
1+τ cj > 1, requiring a probability

greater than 1, which is impossible; so no improvising distribution exists and the
instance is infeasible. Similarly, suppose the algorithm returns False on line (8).

Then
∑b

j=1 pj < 1, which means that on line (6), each pk was assigned proba-
bility (1+τ)βck (since if any pk were assigned 1−

∑
i ̸=k pk, the total probability

would be 1 thereafter). An improvising distribution would assign probability at
most β to each element, and so would be able to assign a maximum probabil-
ity of

∑b
j=1 βc

′
j . Then once again by our model counting inequality we have∑b

j=1 βc
′
j ≤

∑b
j=1(1 + τ)βji < 1, and so the instance is once again infeasible.

Finally we show that any distribution satisfying the randomness parameters
α, β has expected cost at least Lo. As discussed earlier, since Lo has been as-
signed, the pj ’s form a probability distribution. Moreover, each pj is at least
αcj/(1 + τ) and at most (1 + τ)βcj . Let G be the distribution returned by the
greedy cost construction. By cost-minimality of G (Lemma 1), it suffices to show
Lo ≤ E[K(w) | w ← G]. Let p′j be the probability with which the greedy distri-
bution samples an element from bucket j, and let the expected cost of an item
sampled from G conditioned on sampling from bucket j be r′j . We show that

Lo ≤
∑b

j=1 p
′
jr

′
j .

Our algorithm starts by assigning αcj/(1 + τ) probability to each bucket,
and then increases the weight of each bucket starting with the cheapest to up to
(1+ τ)βcj until a probability of 1 is reached. Let m denote the number of times
a bucket is assigned (1 + τ)βcj probability (so 0 ≤ m ≤ b). If m = b, then every
bucket was assigned probability (1+τ)βcj . By the accuracy of the model counts,

pj = (1+τ)βcj ≥ βc′j ≥ p′j for all j, and so 1 =
∑b

j=1 pj ≥
∑b

j=1 p
′
j = 1, and thus

pj = p′j for all j. Then as rj ≤ r′j < rj+1, we have Lo =
∑b

j=1 pjr
j ≤

∑b
j=1 p

′
jr

′
j ,

as desired.

Randomized Synthesis for Diversity and Cost Constraints with CI 31

Now suppose instead m < b. If m > 0, then there will be a nonempty initial
segment of buckets assigned (1 + τ)βcj probability, and thus as above an initial
segment where for j = 1 to m, pj ≥ p′j . If instead m = 0, then bucket number 1
was assigned probability 1−

∑
j ̸=1 pj , and so the rest of the buckets are left with

probability αci/(1+ τ). By model counting, for all these buckets the greedy cost

construction assigns at least αc′j ≥ αcj/(1+τ) = pj , and so
∑b

j=2 p
′
j ≥

∑b
j=2 pj ,

which implies p1 ≥ p′1 (as both distributions must sum to 1). Therefore, in both
cases, there is a length-(1 + m) segment 1, . . . ,m for which pj ≥ p′j . Then as∑b

j=1 pj =
∑b

j=1 p
′
j = 1, we also have that

∑m
j=1 pj − p′j =

∑b
j=m+1 p

′
j − pj ≥ 0.

Then we have:

b∑
j=1

p′jr
′
j −

b∑
j=1

pjr
j−1 ≥

b∑
j=1

p′jr
j−1 −

b∑
j=1

pjr
j−1

=

 m∑
j=1

p′jr
j−1 +

b∑
j=m+1

p′jr
j−1

−
 m∑

j=1

pjr
j−1 +

b∑
j=m+1

pjr
j−1

= −

m∑
j=1

(pj − p′j)r
j−1 +

b∑
j=m+1

(p′j − pj)r
j−1

≥ −

 m∑
j=1

pj − p′j

 rm−1 +

 b∑
j=m+1

p′j − pj

 rm

= −

 m∑
j=1

pj − p′j

 rm−1 +

 m∑
j=1

pj − p′j

 rm

=

 m∑
j=1

pj − p′j

 (rm − rm−1)

≥ 0

So Lo =
∑b

j=1 pjr
j−1 is less or than equal to the expected cost of the distribution

G returned by the greedy cost construction. This concludes the proof. ⊓⊔

Lemma 3. Let C be a Boolean LQCI instance. Let Di and Loi be the distribution
and Lo value returned by running Algorithm 1 (with confidence 1− δ, tolerance
τ , and bucket width r) on label i. Suppose further that you run the greedy label
construction using Loi as label i’s expected cost, and pi is the probability assigned
by the construction to label i. This results in a distribution D̃ over words. Let

Low =
∑|Ω|

i=1 piLoi. Then the expected cost of D̃ satisfies Low ≤ E[K(w)|w ←
D̃] ≤ r ·Low. Moreover, for any improvising distribution D′ for the instance, we
have that Low ≤ E[K(w)|w ← D′].

Proof. By Lemma 2, we know that the distributionDi returned by running Algo-
rithm 1 on label i satisfies Loi ≤ E[K(w)|w ← Di] ≤ rLoi for all i. The expected

32 A. Gittis*, E. Vin*, and D. J. Fremont

cost of D̃ is given by E[K(w)|w ← D̃] =
∑|Ω|

i=1 piE[K(w)|w ← Di], and so we

have Low =
∑|Ω|

i=1 piLoi ≤
∑|Ω|

i=1 piE[K(w)|w ← Di] ≤
∑|Ω|

i=1 pirLoi = r · Low,
giving the first claim.

To show the second claim, it suffices to show that the distribution G returned
by the greedy LQCI construction from Section 3 satisfies Low ≤ E[K(w) | w ←
G], as G has minimal cost among improvising distributions (Lemma 1). For each
label we have an associated Loi value (from Algorithm 1), and also the expected
cost for sampling from that label according to the greedy construction, call this
value ki. Moreover, from Lemma 2 (4) we have that Loi ≤ ki. Let p′i be the
probability assigned to label i with expected cost ki by the greedy construction.
Recall that for a set of fixed label costs, the greedy label construction is optimal

for minimizing expected costs, so in particular,
∑|Ω|

i=1 p
′
iLoi ≥

∑|Ω|
i=1 piLoi. Using

this we can show that Low is a lower bound. We have:

E[K(w)|w ← G] =

|Ω|∑
i=1

p′iki ≥
|Ω|∑
i=1

p′iLoi ≥
|Ω|∑
i=1

piLoi = Low

⊓⊔

Theorem 5 Proof of Correctness

Proof. We take as input a confidence 1− δ ∈ (0, 1], randomness tolerance γ > 0,
and cost tolerance ζ > 0. Fix the bucket ratio r = 1 + ζ, and set the number
of buckets b =

⌈
logr(2

|y|))
⌉
where |y| is the size in bits of the cost encoding.

Next form a Boolean formula ϕi(x, y, z) for each label class (of which there are
polynomially many) as described in Section 5, and run Algorithm 1 on each
such formula with model count confidence 1 − d such that (1 − d)|Ω|b ≥ 1 − δ,
and model count tolerance τ such that (1 + τ)3 ≤ 1 + γ, i.e. such that we have
confidence at least 1− δ that all our model counts are accurate within a factor
of 1 + τ . We assume this accuracy for the rest of the argument. Now by Lemma
2, running almost-uniform sampling with tolerance ϵ = τ for each label i we
obtain a distribution Di over words in the label as well as a lower bound of that
distribution’s expected cost Loi. Then using the greedy label construction from
Section 3 over these Loi values, we obtain a distribution over labels, and using
this along with Di a distribution over words D̃. If any iteration of Algorithm 1
fails, or if the greedy label construction fails, or if the associated Low value of
D̃ from Lemma 3 exceeds the cost parameter c, we return failure.

(1) Since the words sampled are obtained by sampling from solutions to

{∃z.ϕi(x, y, z)}|Ω|
i=1, and each such solution satisfies the hard constraint H, if the

procedure above returns a distribution D̃, we trivially have Pr[H(w)|w ← D̃] =
1.

(2) By Lemma 3, E[K(w)|w ← D̃] ≤ r ·Low, and if above procedure returns a

distribution we also have Low ≤ c, so we have E[K(w)|w ← D̃] ≤ rc = (1+ ζ)c.

Randomized Synthesis for Diversity and Cost Constraints with CI 33

(3) Since the greedy label construction succeeded, we have ∀i ∈ {1, . . . , |Ω|}, λ ≤
Pr [w ∈ Ii | w ← D̃] ≤ ρ.

(4) By Lemma 2 (3), for each distribution Di over a label i, we have that

α̂i/((1+ϵ)(1+τ)2) ≤ Pr[y = w|w ← Di] ≤ (1+ϵ)(1+τ)2β̂i. Since (1+ϵ)(1+τ)2 =
(1 + τ)3 ≤ 1 + γ, this means that we have ∀i ∈ {1, . . . , |Ω|}, ∀y ∈ Ii,

α̂i/(1 + γ) ≤ Pr[y = w | w ∈ Ii, w ← D̃] ≤ (1 + γ)β̂i

Moreover, if we returned failure, we argue that C is infeasible (as above, with
confidence at least 1− δ). The procedure can return failure in three situations.
First, if Algorithm 1 returns failure, whereby using Lemma 2 (3) we have that
the instance is infeasible. Second, if the greedy label construction fails, which
can only happen if condition (1) in Theorem 1 does not hold (and by the same
theorem the instance is therefore infeasible). Third, if Low > c, in which case by
Lemma 3 assuming there exists an improvising distribution D′ yields c < Low ≤
E[K(w)|w ← D′], which is a contradiction as D′ violates the cost condition. ⊓⊔

Theorem 5 Runtime

Proof. Fix our desired confidence 1−δ, randomness tolerance γ, cost tolerance ζ,
and our formula size |F |. As above, we need to choose the tolerance parameters
ϵ, τ such that (1+ϵ)(1+τ)2 ≤ (1+γ), and for simplicity we take ϵ = τ . Then it will
suffice to use τ = γ/4 for small enough γ, for example, so that 1/τ = O(1/γ).
Similarly, we need to choose the confidence 1 − d so that (1 − d)|Ω|b ≥ 1 − δ
(with b the number of buckets), which is possible with a d of size satisfying
1/d = O(|Ω|b/δ).

The bucket ratio is r = 1 + ζ and the number of buckets for each label is
b = ⌈logr(2y)⌉ = O(|F |/ log(r)) = O(|F |/ log(1 + ζ)) = O(|F |/ζ), so there are
|Ω|b = poly(|C|, 1/ζ) buckets in total. Using ApproxMC [7] to count each bucket
with confidence 1−d and tolerance τ takes poly(|F |, 1/τ, log(1/d)) time. Plugging
in the asymptotic bounds for 1/τ and 1/d, the total time for counting all buckets
is poly(|C|, 1/ζ, 1/γ, log(1/δ)).

Finally, the returned improviser can sample words in the same time, using
UniGen [8] to sample approximately in time polynomial in |F | and 1/ϵ = O(1/γ).
(Or for sufficiently-small ϵ, instead using the BGP algorithm [4] to sample exactly
in time polynomial in |F | = O(|C|); see footnote 3). ⊓⊔

Theorem 6 Full Proof

Proof. This problem can be rephrased as an optimization problem. Note that the
conditional distribution within a cost class does not affect the expected cost of
a distribution and the maximum-entropy piecewise distribution is uniform over
each piece. To this end we create an optimization variable D(i, k) that represents
the probability of selecting an element in the cost class Ii,k. With the assumption
of a uniform conditional distribution within each cost class, which again we know
to be entropy-maximizing, the total entropy of our resulting distribution D will
be:

34 A. Gittis*, E. Vin*, and D. J. Fremont

H(D) = −
∑
w∈I

D(w) log(D(w))

= −
|Θ|∑
i=1

|Ω|∑
k=1

∑
w∈Ii,k

D(w) log(D(w))

= −
|Θ|∑
i=1

|Ω|∑
k=1

D(i, k) log

(
D(i, k)

|Ii,k|

)

= −
|Θ|∑
i=1

|Ω|∑
k=1

D(i, k) (log(D(i, k))− log(|Ii,k|))

= −
|Θ|∑
i=1

|Ω|∑
k=1

D(i, k) log(D(i, k))−D(i, k) log(|Ii,k|)

=

|Θ|∑
i=1

|Ω|∑
k=1

−D(i, k) log(D(i, k)) +D(i, k) log(|Ii,k|)

Adding optimization constraints to account for all the requirements of an
improvising distribution, we get the following optimization problem:

Minimize −H(D) = −
|Θ|∑
i=1

|Ω|∑
k=1

−D(i, k) log(D(i, k)) +D(i, k) log(|Ii,k|)

subject to

|Ω|∑
i=1

|Θ|∑
k=1

K(Ii,k)D(i, k)− c ≤ 0 (C1)

∀ i ∈ {1, . . . , |Ω|},−
|Θ|∑
k=1

D(i, k) + λ ≤ 0 (C2)

∀ i ∈ {1, . . . , |Ω|},
|Θ|∑
k=1

D(i, k)− ρ ≤ 0 (C3)

∀ i ∈ {1, . . . , |Ω|},∀ k ∈ {1, . . . , |Θ|},−D(i, k) ≤ 0 (C4)

|Ω|∑
i=1

|Θ|∑
k=1

D(i, k)− 1 = 0 (C5)

∀ i ∈ {1, . . . , |Ω|},∀ k ∈ {1, . . . , |Θ|}, if |Ii,k| = 0, D(i, k) = 0 (C6)

As this takes the form of an optimization problem minimizing a separable
convex equation with linear constraints, we can solve this in polynomial time

Randomized Synthesis for Diversity and Cost Constraints with CI 35

with only a logarithmic dependency on the maximum additive error τ allowed
using an algorithm by Chubanov [11]. All we require is an initial feasible distri-
bution, which can be calculated using the greedy LQCI construction (efficiently,
according to Theorem 2) for the equivalent LQCI problem.

We must now show that these two problems are equivalent. The objective
function being minimized is the negation of the entropy of the distribution de-
fined by the D(i, k) probabilities, as we saw above. So we only need show that a
distribution assigning probability D(i, k) to cost class Ii,k (distributed uniformly
over words in that class) is an improvising distribution if and only if it satisfies
constraints (C1-C6).

(⇒) If a distribution is improvising for the MELQCI problem, it
satisfies constraints (C1-C6).
Let D be an improvising distribution for a MELQCI problem C, and define
D(i, k) = Pr[w ∈ Ii,k | w ← D]. As D is improvising, the expected cost of
a word sampled from it is at most c, which implies (C1) is satisfied. D must
also have marginal label probabilities between λ and ρ, which implies (C2-
C3) are satisfied. Since D is a probability distribution, all its probabilities are
nonnegative and sum to 1, satisfying (C4-C5). Finally, if |Ii,k| = 0 then no word
is contained in Ii,k, so D(i, k) = 0 by definition and therefore (C6) is satisfied.

(⇐) If a distribution satisfies constraints (C1-C6), it is improvising
for the MELQCI problem.
Given values D(i, k) satisfying conditions (C1-C6), the corresponding distri-
bution on words D is defined by letting D(w) = D(i, k)/|Ii,k| if w ∈ Ii,k (and
D(w) = 0 if w is not contained in any cost class). We need to show that D is
an improvising distribution. First, by conditions (C4-C6) the probabilities are
nonnegative and sum to 1 (note how (C6) ensures that if D(i, k) > 0 then there
is some w ∈ Ii,k), so D is a probability distribution. Next, since we only give
probability to elements of I, the hard constraint is satisfied. D also satisfies the
cost constraint due to condition (C1), and the randomness over labels constraint
due to conditions (C2-C3). So D is an improvising distribution for C. ⊓⊔

	Randomized Synthesis for Diversity and Cost Constraints with Control Improvisation

