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ABSTRACT
We present a computational design pipeline that allows evaluation of the
robot and environment parameters in a robust manner, giving insight
into interactions that can lead to mismatch between simulated behaviour
and reality. Our pipeline evaluates robot designs across different design
parameters in a large variety of stochastically-defined environments to
robustly infer the qualitative effect of robot parameters on its performance.
We then quantitatively ground this insight by selecting and building a
small number of physical robots to help establish bounds on the trend in
parameters observed in simulation. This combination of simulation and
empirical evaluation helps narrow the sim-to-real gap without excessive
expensive physical testing to augment the intuition of the human designer.

CCS CONCEPTS
• Human-centered computing→ Ubiquitous and mobile comput-
ing design and evaluation methods.
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1 INTRODUCTION
Simulation can be a powerful tool for robot design, allowing inexpen-
sive exploration of many candidate designs in a variety of environments.
However, simulated robot behaviors do not always match reality — the
so-called “sim-to-real” gap — causing the results of simulation to be ap-
proximate or evenmisleading. Figuring out the interaction of environment
parameters and robot parameters that cause the mismatch is a large part
of the job of a robot designer. Hence, there is the need for a system that
is able to evaluate a variety of robot designs in simulated environments,
and then a selected few in a real environment, in order to better interpret
the simulation results. In this paper we present such a system, provid-
ing a first step toward bridging the gap between reality and simulated
behaviours, that helps augment the designer’s intuition in dealing with
this gap.

In order to evaluate robot and environment parameters together, our
system must satisfy two requirements. First, it must provide a design
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framework to quickly design a wide variety of complex robot morpholo-
gies. To assess these designs in real-life as well as simulation, the frame-
work must allow designs to be both exported to a simulator and also be
rapidly fabricated.

Second, the system must provide a framework that allows the designer
to quickly design parameterized environments, and in fact a probability
distribution over such environments. Defining the environments in a
probabilistic manner allows a greater variety of scenarios to be explored,
while also making the evaluations of the designs robust to noise and
uncertainty. This is critical to be able to rely on the results that simula-
tion would provide, as we can verify that our designs are robust against
minor perturbations that will almost surely be present in a real-world
environment.

An important consideration for such computational design pipelines is
closing the “sim-to-real” gap, i.e, establishing a correspondence between
the simulated results and real-life behaviour of the robot. [Alattas et al.
2019] defined this “reality gap” as the high cost of performing evolution
in physical hardware, which limits the design space that can be real-
ized in real life. [Samuelsen and Glette 2015] explored the reality gap
in transferring the simulated behaviour of 3D-printed robots to real life,
sub-sampled from a large pool of simulated designs, many of which did
not quite match the simulated performance. This evaluation could form
the basis of a “transferability model” [Samuelsen and Glette 2015] , based
on a small number of real-world samples, to bridge the sim-to-real gap.
The robots thus designed should also be easy and cheap to fabricate, so
as to be able to quickly test out viable designs.

We take this idea forward into a cohesive framework to assess robot
designs, first in simulation and then in reality, bringing an additional level
of insight into the design process by increasing the size of the design
space that the designer can traverse, giving a more granular look at how
the robot and environment parameters interact with one another. The
main contributions of the paper can be summarized as follows:

• Provide a oracle to quickly evaluate parameterized robots in both
probablistically-defined simulated environments and real-life phys-
ical experiments.

• In doing so, provide a way to augment the intuition of the human
designer in robustly understanding how the design parameters
affect robot performance across a given class of environments.

2 RELATEDWORK
The effect of the environment on the performance of different robot mor-
phologies has been a long-standing research topic that has been addressed
by several computational design pipelines. Papers such as [Zhao et al.
2020] and [Miras and Eiben 2019] discuss methods of optimizing and gen-
erating robot designs over a few specified terrains in simulations, without
addressing the question of sim-to-real agreement. Pipelines that provide
methods to fabricate feasible designs evaluated in simulated environments
include [Auerbach et al. 2014], [Megaro et al. 2015] and [Desai et al. 2017]:
these do not incorporate any feedback from real-life evaluations of their
robot designs in their selection criteria. The paper [Whitman et al. 2020]
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looked at a deep reinforcement learning-based approach for selecting
modular robot designs that optimize performance while minimizing cost
and design complexity. We, in contrast provide a method of using em-
pirical real-life tests along with a grid search, to constrain our feasible
design space. The work in [Geilinger et al. 2018] does in fact evaluate 3
real-life fabricated models chosen from their optimization routine; the
fabrication method however is time-consuming and only really serves
to verify the results of the simulations, not augment the intuition of the
designer while performing an iterative search over feasible design pa-
rameters. This work also does not take into account the effect of varying
environmental parameters.

Several additional works attempt to bridge the sim-to-real gap in ro-
bot design without exploring the effect of environment parameters, e.g.
[Moreno et al. 2017] on quick-assembling robot modules, [Schaff et al.
2022] on soft robots, and [Kriegman et al. 2020] on pneumatically-actuated
silicone robots on a flat plain. In these works the environment plays no
significant role in determining the design parameters.

[Park and Lee 2021] specifically seek to generate novel designs of
wheeled mobile robots from combinations of modular components, eval-
uated in 2 static environments. The robots can be realized in real life as
well; however the authors have not demonstrated a use of the real-life
fabrication and validation in influencing the choice of a feasible set of
design parameters, instead relying solely on simulation results.

[Zonghao et al. 2022] evaluates parameterized legged robots in three
fixed environments. This work seeks to define the impact of human
intuition on the evolutionary process. Our work in contrast seeks to study
the combined effect of design and environmental parameters, by including
the impact of real-life tests in determining the feasibility of a given design.

The technique of domain randomization has previously been used to
avoid overfitting when training models or designing policies, as in [Mehta
et al. 2019; Ramos et al. 2019]. Our work can be viewed as applying a form
of domain randomization, where the randomization is used to provide
more robust evaluations of different designs’ performance in real-world
scenarios.

Finally, in the domain of autonomous vehicles, [Fremont et al. 2020]
bridges the sim-to-real gap by using tests in simulation to guide selection
of tests to perform in reality. As in our framework, tests are generated from
an environment model written in the Scenic probabilistic programming
language [Fremont et al. 2019]; however, their framework assumes a fixed
vehicle design, while our paper enables joint exploration of designs and
environments.

3 SYSTEM OVERVIEW
Our goal is to empower designers to make better choices while designing
robots; hence this simulation-aided design tool that allows one to close the
sim-to-real gap that exists between robot designs and real-life behaviour.
What sets our paper apart is that our design pipeline allows us to test
designs in environments with varying parameters and perturbations that
make the results more robust. These then let us hone down on a set of
real-life exploration points, which can be set up and run rapidly to help
identify trends in design parameters more accurately. In particular, we
address the problem of uncertainty and noise in simulations by anchoring
to real-life experiments as opposed to limiting to “sim2null” or simulation-
only research as discussed in [Höfer et al. 2020].

Our paper seeks to go beyond the approaches in the literature on two
fronts: 1) Have a rapid, low overhead way of prototyping selected robot
designs, and 2) Be able to define parameterized and potentially-stochastic
environments that can lead to more robust assessments of candidate
designs. These two features would allow the user to extract meaningful
trends in design parameters by anchoring them with the real-life data
gathered from the smaller set of experiments.

Doing so requires two frameworks: A robot design module and an
environment design module. This is achieved in this paper by building
on the work of two pre-existing tools. First, the Robot Compiler (RoCo)
[Mehta et al. 2015, 2014; Mehta and Rus 2014] creates parameterized,

Figure 1: System Overview.

modular robot designs that can be evaluated in a simulator. RoCo also
allows the user to rapidly and inexpensively fabricate these designs in real
life by cutting and folding 2D patterns and adding simple electronic parts.
This lets the user iterate through a large number of designs in simulation
and (fewer) in reality with reduced time and overhead.

Second, Scenic [Fremont et al. 2019, 2022] is a probabilistic program-
ming language for modeling the environments of cyber-physical systems.
When paired with a compatible simulator, Scenic allows the the user to
describe, generate, and simulate scenarios of interest while enforcing
requirements and recording data.

We bring the outputs generated by these two components into the
robot simulator Webots [Michel 2004], which allows for a seamless evalu-
ation of selected designs in well-defined, controllable, probabilistically-
defined environments. Webots provides a plethora of sensors and custom
physics options, while being the least CPU-intensive among similar simu-
lators [Collins et al. 2021].

The architecture of our system is depicted in Fig. 1. In the remainder of
this section, we describe the robot and environment design components
of the pipeline in detail.

3.1 Defining and Modifying Robot Designs
3.1.1 Parameterized Components. A key requirement of our system is
the ability to easily generate a large number of robot designs. The Robot
Compiler is a tool that lets the user design robots by using parameterized,
reusable components. This framework allows for creation of modular,
reusable components that can be superimposed via complex shape gram-
mars, while still allowing for manufacturable designs.

An example of the composition of complex geometries using simple
modules can be seen in Fig. 13 in the Appendix. Simple components
are progressively combined into more complex ones, constraining their
parameters at each stage, until the robot design is complete. (A similar
example is shown in [Yan et al. 2022].) Since the sub-components inherit
the properties of their parent modules, the user need only modify param-
eters at the root level to get a family of designs. As an example, a wheeled
mobile robot with two hinges can be constructed by combining 3 wheel
modules, 2 hinge modules and one brain module, resulting in a snake-like
pivoting car.

We extended the RoCo platform to generate Webots-compatible robot
definitions, preserving functional relationships between parts, allowing
the user to define physics variables, and providing all the sensing and
actuation capabilities defined for a given robot. This ensures that any
general robot designed within RoCo can be imported into Webots and
simulated.

3.1.2 Robot Morphology and Controller. Another key requirement is the
ease ofmanufacturability of the robot designs.Many computational design
pipelines addressing the sim-to-real gap make use of readily-available
components to create new designs [Park and Lee 2021], which severely
limits the capability of the system to explore the effect of varying the
design parameters of the individual parts. Other pipelines make use of
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3D-printed custom robot modules [Auerbach et al. 2014], which can take
hours to fabricate. Alternatively, the mechanical structures needed to
build a robot can be realized from the 2D shell of the desired geometry,
obtained by cutting and folding any sort of sheet. RoCo generates such
fold patterns for each design; these can be assembled in minutes, greatly
accelerating the prototyping phase.

In this paper, we explored 4-wheeled car morphologies with varying
parameters that include the length and width of the main body and the
radius of the wheels.We limited our experiments to this space of designs in
order to obtain a more interpretable relationship between the behaviours
observed in simulation and reality. For the same reason, we chose a simple
differential drive controller so as to highlight the particular interplay
between the robot design and the environmental parameters, which could
get obfuscated with a more complex controller. Since we ran multiple
experiments over many manufactured robot designs, these considerations
were taken into account to showcase the capability of this pipeline in a
preliminary manner.

Figure 2: The different fabricated 4-Wheeled and 6-Wheeled cars.
Top Row: Designs evaluated in step pyramid environment. These
had varying widths, with length, number of wheels and radius
fixed; Bottom Row: Other Fabricated Designs, these had an assort-
ment of different parameters.

3.1.3 Fabrication. The fabricated robots need to be easily testable in real-
world scenarios to enable rapid iteration in the design process. The robot
designs thus realized were fabricated via cutting and folding the 2D pat-
terns generated by RoCo. The sheet material used was PET (Polyethylene
terephthalate ) which is lightweight andwaterproof. The assembly utilized
off-the-shelf electronic components including the Adafruit HUZZAH32 –
ESP32 Feather Board as the microcontroller, a Servo Featherwing [Earl
2012] and FS90R continuous-rotation servos to drive the wheels.

3.2 Defining Environments
As we have argued above, modeling a space of environments, perhaps
with stochastic elements, can be substantially more useful than assuming
a fixed environment. For this reason, our framework allows the user to
define the environment using the Scenic probabilistic programming lan-
guage [Fremont et al. 2019, 2022]. Scenic provides flexible, readable syntax
for laying out the geometry of an environment which is useful even when
the environment is fixed; in addition, Scenic allows placing distributions
and constraints on any environment parameters (see Appendix B for
detailed example programs based on our experiments). By using Scenic,
we are able to define easily define complex and layered distributions over
environments, from which Scenic can then sample to generate concrete
test cases.

We use Scenic’s probabilistic features in two ways: first, to address
imperfect fidelity of the environment model and the simulator itself. If a
robot performs well on an environment in simulation, assuming the sim-
ulator has perfect fidelity, we can be confident that the robot will perform
well in real life on the same environment. These two restrictions are not
insignificant: in most applications the simulator will not be perfect and the
environment we simulate will not be exactly the environment we intend to
deploy our robot to. We can guard against both these cases by considering
not only the specific environment, but also nearby environments which

are almost the same as our original environment. If our design performs
well on many environments in such a neighborhood, we can gain some
confidence that the design will work well on the real-world instance of
that environment, which will probably be a nearby environment. We can
also deduce that the results of our simulator are at least consistent over a
neighborhood of environments, even if we cannot be sure they will have
perfect fidelity. Scenic makes it easy to add random perturbations to an
existing environment model with its mutate statement.

Second, we can use probabilistic modeling in cases where the exact
environment the robot will operate in is unknown, but can be roughly
bounded and parameterized. For example, consider a robot that will be
deployed somewhere within a region with rough, hilly terrain. The de-
ployment location is not known in advance, and so the exact environment
cannot be determined, but by looking at the whole region one can infer a
distribution over the size, spacing, etc. of the hills in any section of the
overall environment. In this case, even if there are no robot designs that
work well for all possible deployment locations, we may be interested
in finding a robot that has a high probability of working well. We can
then build a Scenic model containing hills with randomized dimensions
and positions, and evaluate our designs on this model. The results of test
cases sampled from this model can then provide insight into how different
aspects of the unknown environment may affect the performance of the
robot.

To support our system, we extended Scenic in two ways. First, in order
to support application-specific evaluation metrics for robot designs, we
added a record statement which saves the value of an arbitrary Scenic
expression at the start or end of a simulation, or as a time series over the
entire simulation. Second, in order to test different robot designs against
the same environment, we added an API to condition the distributions of
specified objects and parameters in a Scenic program to their values in an
already-sampled scenario. This allows our pipeline to sample a random
environment from the Scenic model, then fix the environment parameters
while varying robot parameters to test different robot designs.

4 EXPERIMENTS AND RESULTS
A key contribution of this paper is the ability of the pipeline to define
complex parameterized environments and robots, so the choice of both
and the parameters we choose to change to see different behaviours
becomes very important.

We performed 2 main experiments to evaluate our pipeline, performed
in simulation (in Webots) and in real-life environments to capture the sim-
to-real gap. These experiments aim not to identify a single optimal design,
but to outline how the complex interplay in the design and environment
parameters may influence the space of feasible designs.

Our first experiment seeks to illustrate the correspondence between
reality and simulation for a very simple static environment: two speed
bumps, parameterized by the height of bumps, the gap between them and
their location on on flat plane. The robot must cross this simple obstacle
to reach the target. We evaluated a 4-wheeled car on a pair of such speed
bumps with steadily increasing heights, until it was no longer able to
cross them. The height ranged from 6mm to 30mm high, in 5 steps. We
observed that in real life the robot was able to cross the bumps up to a
height of 30mm, where it simply stalled as shown in the last image in
Fig. 7. In simulation, however, for the same parameter values, the front
wheels of the car climbed on top of the bumps and then got stuck, as
shown in Fig. 3.

This result demonstrates the sim-to-real gap in the behaviour of the
robot. This knowledge is useful to a designer, so as to be able to interpret
the results and understand what parameter values might cause these
discrepancies. However, it is important to note that this is a static envi-
ronment, with only one robot being evaluated. This evaluation would be
more robust and reliable if the results had been averaged across multiple
slightly perturbed environments: this would account for the noise inher-
ent in real-world experiments, smoothing out the effect of discrepancies.
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(a) 6mm: climbs over. (b) 30mm: gets stuck on top.

Figure 3: Effect of speed bump height on robot behavior.

Figure 4: Step Pyramid Experiment in Simulation
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Figure 5: Performance of different 4-wheeled car designs in a sin-
gle simulated environment. Trials in red failed to complete the
pyramid-crossing task within 120s.
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Figure 6: Results averaged over 100 mutated environments. Green
indicates > 75% success rate, blue > 50% but < 75% success rate, and
navy < 50% success rate.

Thus, a better method of evaluating trends in parameters is illustrated in
our next experiment.

In our second experiment, we evaluate a set of 4-wheeled cars on the
task of navigating through two offset step pyramids within 120s, shown
in Fig. 4. We constructed a corresponding real-life environment, shown
in Fig. 8.

For the simulations, to provide robustness against slight differences
in the simulated environment and the real environment, we evaluated
all robots on 100 instances of the step pyramid environment with slight
random perturbations to the center positions of the pyramid and the start
position of the robot. We call these instances of the environment mutated
environments. For the robots, the length, radius, and number of wheels
were kept constant, and the width parameter was varied from 65mm to
245mm.

This class of experiments were selected as this is a constrained en-
vironment, and they challenge the idea of intuitively thinking that a
bigger robot would perform better across the board: the simulation and
experimental results will indicate otherwise. Having multiple mutated
environments helps us indicate the direction of these trends in a more
robust manner.

We first look at Fig. 5, which shows the variation in performance of
various 4-wheeled car designs in a single environment (without muta-
tions). A time taken of 120 seconds indicates a failure case, with shorter
times considered successes. The results are clearly not smooth, making
the choice the minimal set of designs to validate in real life tricky, since
there are many viable candidates. Setting the failure threshold to 40s
yields ∼ 15 viable designs that seem to perform at the same level, but
does not address the outlier design with width 135mm that succeeded but
only with a longer timeout.

This problem is addressed by running the same set of robots in multiple
environments with slightly mutated parameters as described above. Fig. 6
shows the mean success rate of each of the designs across 100 such
mutated environments. The colors for each of these averaged times give
an idea of the failure rate of the robots: green indicates >75% success
rate, blue indicates >50% but <75% success rate, and navy indicates <50%
success rate. Thus the designer can modify the threshold for success
according to their requirements, and choose only the designs that meet
the criteria.

For our experiment, we chose to target the designs that yield at least a
75% success rate, i.e., the values indicated in green. Thus for our real-life
tests we chose to fabricate the designs in the middle of the feasible region
(green) and a few on the edges and outside of it. Specifically, we selected
robots with widths of 95mm (left edge of the green region), 115mm (middle
of the green region), 65mm (the left edge of the navy region) and 180mm
(the right edge of the blue region). For each design we conducted several
trials; a trial was considered successful if the robot was able to navigate
the step pyramids and emerge on the other side upright and kept moving
forward. The results from the real-life tests are summarized in Tab. 1.

We can see that the real-life experiments favour the robot with 95mm
width, instead of the 115mm width expected from simulations. The de-
signer now knows that they should prefer a width value closer to the edge
of the feasible region (closer to 95mm) indicated by real-life experiments.
The failure of the robot with 180mm puts a rough upper bound on width
values, indicating that the other end of that region (and beyond) would be
a waste of time to explore. Similarly, the failure of the 65mm width robot
puts a lower bound on the viable region. Thus, the real-life experiments
drastically narrowed down the design space the designer needs to explore,
or optimize over to settle on a final robot design to be deployed.

This insight would not have been possible to gain without the use of pa-
rameterized, rapidly fabricable robots and testing against probablistically-
defined environments in our computational design pipeline. The ability
to run targeted real-life experiments quickly vastly improves the design
decisions the engineer makes with regards to selecting a set of feasible
robot parameters.
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Figure 7: Speed Bump Experiments in Real Life. The height of the bumps ranges from 6mm in the first photo to 30mm in the last, as in
Fig. 3. The last image captures the point of departure from simulated results, diverging from Fig. 3 (b).

Figure 8: 4-Wheeled Car Real Life Validation Experiments. The 4 robot designs correspond to those in Tab. 5.

Table 1: Experiment outcomes for the fabricated 4-wheeled cars. The robot length and wheel radius were fixed at 200mm and 60mm
respectively. A trial “failed” if the robot did not pass the pyramids within 120s while remaining upright.

Width Parameter value (in mm) Number of trials passed Number of trials failed % of trials passed
65 0 10 0
95 7 3 70
115 3 9 25
180 0 12 0

5 DISCUSSION
Running simulations over multiple, perturbed environments helps bring
the simulated results closer to real-world behaviour by accounting for the
noise inherent in real-life situations. In this way, we can be more confident
that our design is actually functional for a space of environments instead
of merely one, and that its success was not due to simulator error. Having
vastly reduced the viable candidates to target for real-life experiments,
the engineer only needs to build a select few designs to test in real life.

These experiments allow the engineer to be reasonably confident that
the design would work in the one known environment in real life, relying
on the performance bounds that the simulations provided. In the case of
a very narrow feasibility region in simulation, it might not overlap with
reality at all, which may lead to not learning much. Nonetheless, that
indicates that the simulation model is not sufficiently accurate for the
task at hand. Testing edge cases in real-life experiments would indicate
similar modelling deficiencies, for behaviors not observed in simulation.
These can then be incorporated in future modelling iterations, tweaking
or adding model parameters to better capture reality.

Another line of enquiry is exploring a wider variety of more inter-
esting designs with more parameters and consequently more complex
controllers. The current work omitted doing that, so as to keep the focus
solely on the interplay between the design and environmental parame-
ters that characterize the sim-to-real gap. For larger design spaces, more
sophisticated search and optimization techniques than the simple grid
search we used will be vital; our pipeline can serve as a black-box perfor-
mance oracle for such techniques, as we demonstrate in [Yu et al. 2023]. In
future work we plan to extend such automated design space exploration
algorithms with feedback from real-world tests: for example, running a
coarse search to narrow the space of feasible design parameters, testing a
few designs rapidly in reality, then using these results to guide further
exploration in simulation.

Along with increasing the complexity of the design space, we can also
explore more complex spaces of environments. Our system’s use of Scenic

Figure 9: Two Instances of theHill Field Experiments in Simulation

enables substantial scalability in this direction, as a more complex envi-
ronment such as the field of randomized Gaussian hills shown in Fig. 9
are not much harder to model in Scenic than the simple environments
we used in our experiments. Scenic abstracts away the complexity of
managing distributions with complicated dependencies, and uses rea-
soning techniques to preserve the efficiency of sampling. Both of these
are essential to constructing complicated environments that allow the
evaluation of robots in scenarios closer to real-life deployment situations.
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A JSON LISTING EXAMPLE FOR INPUT TO THE
PIPELINE

The parameters of all the robot designs and environments under consid-
eration are defined first, Then a list of all the experiments i.e the pair
of robot and environments to be evaluated in the simulator are defined.
These can also be supplemented with additional experimental parameters
such as timeout and so on. This is encapsulated into a lightweight format
that can be modified by a human during development, but also that can
be easy to parse by a machine once the file is ready to be automatically
generated (as an output of a design factory for example). The seamless
nature of the pipeline is seen in the way it allows for simulations to be
run in parallel,recovery and resumption of partially completed jobs, and
running in containerization via Docker, all via the command line utility
provided.

Listing 1: Example of using the JSON interface of the pipeline,
defining the robot and environment parameters

1 {
2 "experiments": {
3 "3": {
4 "veh_id": 5,
5 "env_id": 4,
6 "params": {"timeout": 400}}
7 },
8 "vehicles": {
9 "1":
10 {
11 "type": "B_H_W",
12 "params": [
13 {"common" : {
14 "width":80,
15 "height":36,
16 "radius" : 30,
17 }
18 },
19 {"B": {
20 "length":60
21 }
22 },
23 {"H": {
24 "length":20
25 }},
26 {"W": {
27 "tire_thickness":1,
28 "radius" : 30,
29 "length":40
30 }},
31

32 ]
33 }
34

35 },
36 "environments": {
37 "4": {
38 "scenic_filename": "middle_hill.scenic",
39 "wbt_filename": "StandardMap.wbt",
40 "seed": 42,
41 "scenic_params": {"hillX": -0.3, "

hillWidth": 1.25,"hillLength": 1.25,"hillHeight":
0.3 } }

42 }
43 }
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B SCENIC ENVIRONMENT EXAMPLE
In Figure 10, we show a simplified version of one of our experiment
environments.

This code first places two bumps left and right of a center point.We then
create a robot at the start position facing towards the end position, which
becomes the ego object. Finally we set up our termination conditions and
recording statements. The termination conditions simply terminate the
simulation if we get close enough to the target or if we reach a timeout. The
record statements record several metrics once at the end of the simulation.
Note that Scenic also supports recording values at the start of simulation,
or at every timestep.

The code in Figure 11 augments the code in Figure 10 to add slight
position mutations to the various locations in the program. Each of the
positions has gaussian noise (standard deviation of 0.1) added to the x
and y values. We could also easily mutate the dimensions of the speed
bumps in a similar fashion.

We show a short example of an almost fully random program in Figure
12. Scenic takes care of the particulars, such as ensuring the bumps do
not intersect.

1 # Declare several useful locations

2 bumpCenter = Point at (0,0)

3 startPos = Point at (0,1)

4 endPos = Point at (0,-1)

5

6 # Create two bumps left and right of the bump center.

7 Bump left of bumpCenter by 0.05,

8 with width 0.1,

9 with length 0.1,

10 with height 0.03

11 Bump right of bumpCenter by 0.05,

12 with width 0.1,

13 with length 0.1,

14 with height 0.03

15

16 # Create a robot, representing the ego

17 ego = Robot at startPos facing endPos

18

19 # Termination conditions

20 terminate when distance from ego to target <= 0.05

21 terminate after simulationTimeLimit seconds

22

23 # Record simulation data

24 record final (distance to target) as distanceToTarget

25 record final ego.consumedEnergy as consumedEnergy

26 record final simulation().currentRealTime as

elapsedTime

Figure 10: A simplified Scenic program expressing an environment
with two speed bumps.

1 # Mutate the points to slightly change their position

2 mutate bumpCenter, startPos, endPos by 0.01

Figure 11: A line modifying the simple Scenic program to have
slightly random positions

1 # Declare several useful locations

2 startPos = Point at (0,1)

3 endPos = Point at (0,-1)

4

5 # Create 10 randomly sized bumps in a central region

of the map

6 bump_region = RectangularRegion((0,0), 0, 2, 0.5)

7

8 for _ in range(10):

9 Bump in bump_region,

10 with width Range(0.05,0.1),

11 with length Range(0.05,0.1),

12 with height Range(0.01,0.03)

13

14 # Create a robot, representing the ego

15 ego = Robot at startPos facing endPos

Figure 12: A simplified Scenic program describing a field of bumps

Figure 13: RoCo Example: Building a robot with a variety of mod-
ules

C ROCO DESIGN EXAMPLE
This example builds the robot shown in Fig. 13. The first step is to add
all the necessary parameters for the robot (the same goes for the compo-
nents):

1 c = Component("length", 100, paramType="length",

minValue=40)

2 c.addParameter("width", 60, paramType="length",

minValue=60)

3 c.addParameter("height", 36, paramType="length",

minValue=36)

4 c.addParameter("radius", 36, paramType="length",

minValue=13)

This is then followed by adding the modules. This section adds the
Hinge Modules, which inherits certain parameters, from the parent robot,
thus constraining it:

1 # Add vertical Hinge Module

2 c.addSubcomponent("vhinge0","vHingeModule", inherit="

length width height ".split(), prefix=None)

3 c.addSubcomponent("vhinge1","vHingeModule", inherit="

width height driveservo".split(), prefix=None)

Next the microcontroller module is added, also setting certain parame-
ters such that it can be connected properly to the other modules:

1 c.addSubcomponent("brain0","BrainModule", inherit="

width height ".split(), prefix=None,root=True)
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Then the Wheel modules are added:

1 c.addSubcomponent("car0", "WheelModule", inherit="

length width height driveservo radius".split(),

prefix=None)

2 c.addSubcomponent("car1", "WheelModule", inherit="

length width height radius".split(), prefix=None)

3 c.addSubcomponent("car2", "WheelModule", inherit="

length width height driveservo".split(), prefix=

None)

Lastly, the connections are made for the components which can be
done in a loop:

1 for i in range(0,4):

2 c.addConnection(('car0','joinright%d'%(3-i)),('

brain0','joinleft%d'%(i)))

3 c.addConnection(('brain0','joinright%d'%(3-i)),('

vhinge0','joinleft%d'%(i)))

4 c.addConnection(('vhinge0','joinleft%d'%(3-i)),('

car1','joinright%d'%(i)))

5 c.addConnection(('car1','joinright%d'%(3-i)),('

vhinge1','joinleft%d'%(i)))

6 c.addConnection(('vhinge1','joinleft%d'%(3-i)),('

car2','joinright%d'%(i)))

RoCo takes care of the details of generating these patterns and handling
the parameters and interfaces of the components.
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