
Symbiotic CPS Design-Space Exploration through Iterated
Optimization

Sheng-Jung Yu
1
, Inigo Incer

1
, Valmik Prabhu

1
, Anwesha Chattoraj

2
, Eric Vin

3
, Daniel Fremont

3
,

Ankur Mehta
2
, Alberto Sangiovanni-Vincentelli

1
, Shankar Sastry

1
, and Sanjit Seshia

1
,

1
Univeristy of California, Berkeley,

2
University of California, Los Angeles,

3
University of California, Santa Cruz

{shengjungyu, inigo, valmik, alberto, shankar_sastry, sseshia}@berkeley.edu

{anwchatto, mehtank}@ucla.edu

{evin, dfremont}@ucsc.edu

ABSTRACT
Cyber-physical systems (CPSs) are complex systems comprised of com-

putational processes, communication networks, and elements interacting

with the physical world. The design of the CPSs involves many domain-

specific tools and design flows created by engineers with diverse domain

knowledge. As the scale of the systems increases, the heterogeneity na-

ture of CPS design prolongs the CPS design process, making exhaustive

design-space exploration infeasible. The symbiotic design methodology,

in which the designers interact with optimization tools during the design

process, is therefore promising to facilitate the design process by perform-

ing design exploration in a properly restricted design space. We present

a symbiotic design methodology, which explores the design space itera-

tively and optimizes the system by exploiting the collaboration between

designers and tools. The optimization tools perform the design space

exploration, while the human designers use their expertise to guide the

exploration by restricting the design space. Experimental results based

on a robot car configuration problem and an unmanned aerial vehicle

design problem show that the methodology can efficiently and effectively

discover unconventional designs while optimizing the design objectives.

CCS CONCEPTS
• Computer systems organization→ Embedded and cyber-physical
systems; • Human-centered computing→ User centered design.

ACM Reference Format:
Sheng-Jung Yu

1
, Inigo Incer

1
, Valmik Prabhu

1
, Anwesha Chattoraj

2
, Eric Vin

3
,

Daniel Fremont
3
, Ankur Mehta

2
, Alberto Sangiovanni-Vincentelli

1
, Shankar Sastry

1
,

and Sanjit Seshia
1
, . 2023. Symbiotic CPS Design-Space Exploration through Iter-

ated Optimization . In Cyber-Physical Systems and Internet of Things Week 2023
(CPS-IoT Week Workshops ’23), May 09–12, 2023, San Antonio, TX, USA. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3576914.3587525

1 INTRODUCTION
Cyber-physical systems (CPSs) are complex systems comprised of com-

putational processes, communication networks, and elements interacting

with the physical world. The design of CPSs makes use of techniques

applied in various engineering fields, depending on the application, e.g.,

a power distribution system, a space shuttle, or a chemical plant. With

such a diversity, CPS design meets with various challenges, such as com-

ponent heterogeneity and system integration, as elaborated in [10, 12].

To cope with these challenges, several CPS design methodologies have

been proposed [2, 4, 8, 9, 13, 14].

One of the preliminary stages in CPS design is design-space exploration.

At this stage, onewishes to generatemultiple solutions to a design problem

and understand their trade-offs with respect to the design objectives.

Automated tools for CPS design have been developed to efficiently explore

the design space. Finn et al. [5] developed a CPS architecture exploration

algorithm using a combination of discrete and continuous optimization.

This work is licensed under a Creative Commons Attribution International 4.0 License.

CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0049-1/23/05.

https://doi.org/10.1145/3576914.3587525

Discrete methods are used to connect and select components; continuous

optimization is used to size parameters. Bakakeu et al. [1] studied the

design space of the integration of analytic routines in a manufacturing

process for CPSs. For the case of unmanned aerial vehicle (UAV) design,

Krishnan et al. [7] proposed Autopilot, a method to search the design

space of autonomy algorithms and their hardware accelerators for various

classes of UAVs. The designs provided by Autopilot were reported to

outperform industry-standard accelerators.

As the scale of the systems increases, the prohibitively large design

space caused by the complexity and heterogeneous nature of CPS design

prolongs the design process and even makes exhaustive and fully auto-

matic design exploration infeasible. In our view, human designers and

automated tools should be complementary in CPS design space explo-

ration. Experienced human designers, leveraging their underlying domain

knowledge and previous development experience, can direct the tools to

focus the exploration on a restricted design space thus avoiding endless

searches in inferior design sub-spaces.

A symbiotic design methodology, in which the designer and automated

tools collaborate, is therefore a promising solutions to streamline the

design process. In this methodology:

• the automated tools explore designs, using provably-good opti-

mization and statistical learning algorithms, to suggest promising

designs for exploration in the restricted design space provided by

the designers.

• The designers use their domain knowledge to interpret the current

state of the exploration carried out by the tools, state choices of

optimization preferences, and impose restrictions on the design

space for additional exploration by the tools.

To this end, the Defense Advanced Research Projects Agency launched

a project for symbiotic design for CPS [3], aiming to accelerate exploration

of CPS via tight interaction of designers and tools.

Fitzgerald et al. [6] proposed a SysML profile-based language for the

creation of design space exploration experiments. They explore the use of

genetic algorithms to carry out the actual search. However, the interaction

with automated tools is not explored further and manual conversion from

the language to an experiment is still needed.

Motivated by the importance of symbiotic design methodology, this

paper proposes a design methodology for CPSs based on iterative opti-

mization. Our contributions are the following:

• We propose a symbiotic CPS design methodology which iteratively

explores the design space with the collaboration of the designers

and the optimization tools. To the best of our knowledge, this is

the first paper that proposes a symbiotic CPS design exploration

methodology in which the designers interact directly with auto-

mated tools without manual conversions.

• We identify a set of design choices that the designers can make to

interact with the design tools for design space exploration. Com-

pared with [6], no manual conversion from the design choices to

set the automated tools are required.

• We apply the methodology in two CPS design problems: the design

of UAVs and the design of robot configurations. The results shows

https://doi.org/10.1145/3576914.3587525
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576914.3587525


CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

that the proposed methodology is effective for restricting the de-

sign space to interesting sub-spaces and, consequently, it produces

results more efficiently.

• We present a integrated-circuit (IC) design inspired methodology

for UAV design consisting of the following steps: component selec-
tion; placement in free 3D space, and a routing step which adds a

frame to the UAV.

2 PRELIMINARIES
In this section, we introduce the CPS design space exploration problem.

2.1 Elements in CPS Design Space Exploration
Problem

The elements in a CPS design exploration problem consist of a library that

includes the components available for composing a design, parameters

that change the behavior of a component, a net-list that describes the

connection between the components, a set of rewards that are used to

assess the quality of the design, and an oracle that computes the rewards.

Components and Component Library. The components are instances

of the hardware and/or of the software for control algorithms. Their

composition forms a CPS design. The components communicate through

ports.A component Library, denoted by L, is the set of components that

are specified to construct candidate implementations for a particular

design problem. The component types, which partition the library L,
abstract the notion of composability for components: components having

the same type can interact with other components through the same types

of ports. Each component in the same component type shares the same

set of parameters that affect their behaviors. Logic gates in cell-based

digital circuit design flow are an example of a components library. In

the case of UAV design, component types could be propellers, electronic

speed control circuits (ESCs), motors, etc. at various levels of specificity.

Net-list. The net-list is an interconnection of component types. A net-

list T can be represented as a graph whose vertices are component types

and whose labeled edges tell which ports are connected between the

component types. To generate a design, for every node in the net-list, the

component type at the node is replaced with a "real" component of the

same type.

Design parametrization. Once a net-list is chosen, all the designs having
the same net-list can be described by a set of parameters from all its

parameters of the component types. The set of parameters, denoted 𝜙T ,
contains all candidate designs built out of T . We further denote 𝑑T as

the assignment of the value to the parametrization 𝜙T . Each candidate

design consists of selections of components in each component type and

assignments of the values for the parameters.

Oracle. The oracle, denoted by𝑂 , evaluates the performance of a candi-

date design, potentially considering interactions among components. The

oracle for a design problem can be a simulator that models the system and

provides estimates of system performance, or an experiment conducted on

a prototype to measure performance in the real world. The computational

complexity and cost for running an oracle increase the difficulty of design

exploration given limited design time and resources.

Rewards. The rewards are elements in a vector representing the evalu-

ation results of candidate designs mapped by the oracle as shown in the

following relation:

®𝑟 = 𝑂 (T , 𝑑T ), (1)

where T denotes the net-list, ®𝑟 denotes the reward, 𝑑T represents an

assignment of value to the parametrization𝜙T . Each element in the vector

refers to an aspect of the design, such as cost, yield for manufacturability,

energy efficiency, and functionality metrics. For ease of explanation, we

can define each element in the rewards such that the higher the value is,

the more desirable the design is. The optimization of the rewards is thus a

multi-objective optimization problem, which many algorithms, strategies,

Show me the maximum traveled
distances of known designs vs. their
number of propellers.

Number of Propellers

D
is

ta
nc

e 
(k

m
)

2 4 6 8

1.5

3.0

4.5

Show me details about the chosen design.

Design summary
4 propellers. Prop1 = 11x8.5, Prop2=...,
Motor1= MT2208, Motor2=...

Reward 1

Reward 2
...

Reward k

Chosen design

Eng SW

Here they are:

Eng SW

...

Reward N

Figure 1: An initial interaction in which the engineer studies the
performance of existing designs.

and automated tools have been proposed to solve by finding its Pareto

front or solving a single objective optimization problem.

2.2 CPS Design Space Exploration Problem
Given the elements in the design space exploration problem, the design

space, denoted by D, is defined as all possible net-lists and parameter

assignments. The CPS design space exploration problem then can be

defined as follows: Given the component library, oracles, and the rewards,

find the net-list and assignment of parameters for the design such that

the rewards are optimized.

In this paper, we assume that a net-list is provided by the human

designers, and thus the design space is limited to that net-list. Given the

net-list, the assignment to the parametrization defines the design space

containing the net-list, as shown by the following relation:

𝑑T ∈ DT , (2)

where T is the provided net-list, DT denotes the design space limited to

the net-list, and 𝑑T is the assignment to the parametrization 𝜙T . We also

refer to 𝑑T as a design candidate since an assignment to the parameters

uniquely determines a design.

3 THE SYMBIOTIC CPS DESIGN SPACE
EXPLORATION METHODOLOGY

Given a net-list T that defines a space of design parameters 𝜙 , the ideal

design exploration solves the following multi-objective optimization prob-

lem:

𝑑T ← argmax

𝜙T
®𝑟 = 𝑂 (T , 𝜙T ), (3)

where T denotes the net-list, 𝑑T is the design with the optimized param-

eter values, 𝜙T is the parametrization of the design, and ®𝑟 indicates the
evaluation of reward provided by the oracle 𝑂 .

However, solving (3)may be prohibitive, as𝜙T will be large-dimensional

in complex CPSs. Therefore, in this section, we propose our symbiotic

design space-exploration methodology. We abstracted them as Design
Choice Step and Exploration Step. The design choice step allows designers

to restrict the design space to guide the automated tools, and the explo-

ration step is performed by the automated tools to explore the design

space. Our symbiotic design space exploration is the continual process

that alternates between these two steps. First, a few designs are created

through traditional (manual) methods as seed designs. Designers then

select an existing seed design, an objective function, a subset of the pa-

rameters over which to optimize, and constraints on the parameters to

perform an iteration of optimization; to make their selections, designers

make use of their experience that a design objective may be improved by

altering a subset of the parameters. After the design choice is made, the

designers invoke the automated tools to solve (5) and obtain all results as

the potential designs. The designers then review these potential designs,

make manual modifications at their discretion, select new design choice



Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Design step

R
ew

ar
d 

k

0 1 ... n

Seed
design Design after n iterations

Reward 1

Reward 2
...

Reward k

Reward 1

Reward 2
...

Reward k

...

Reward N

...

Reward N

Design Path

Figure 2: A design step is a modification of an existing design
to produce a new one, which is added to the library of known
designs. A design path connects any known design to one of the
seed designs.

and start the next iteration of optimization. The process terminates when

the designer is satisfied with the performance of a design.

Thus, in this methodology, there is symbiotic interaction between the
human user and automated tool. Figure 1 illustrates a dialog in which the

engineer interrogates the software for a properties of known designs.

In this methodology, every known implementation is obtained from an

existing design. As a result, there is a unique path connecting every known

implementation to one of the original seed designs. For each design step,

we know exactly how the new design obtained, as shown in Figure 2.

This provides a high degree of explainability to the design process. In the

following, we detail the Design Choice Step and Exploration Step.

3.1 Design Choice Step
The designer can make the design choice to guide the optimization prob-

lem. Here we summarize the design choices that a designer can make:

• Seed Design Setting: The designers can provide traditional (manual)

designs to the automated tool.

• Manual Modification: The designers make modifications, including

topology changes and parameters adjustment, to a design provided

by the automated tools and then sends it back to the tools.

• Objective Function Setting: The designer can specify the comparison

metrics for the rewards, such as partial ordering, weighted sum, or

priority of each element in the rewards. The objective function is

denoted by 𝐹 .

• Parameter Set Restriction: The designer can specify the subset of

the parameters 𝜙 ′T ⊆ 𝜙T for optimization.

• Parameter Constraint Setting: Besides the variable set, additional
constraints can be set on the parameter to further restrict the design

space, as shown by

𝑐𝑖 (𝜙T ) < 0, 𝑖 = 0 . . . 𝑁𝑐 , (4)

where 𝑐𝑖 denotes the 𝑖
𝑡ℎ

constraint functions and 𝑁𝑐 denotes the

number of constraints set by the designers.

• Incremental Optimization: The designers request the automated tool

to solve the optimization problemwith selected global optimization

with a certain design in the automated tools as the initial point.

• Local optimization: Similar to the incremental optimization, the

designers request the automated tool to solve optimization problem,

while the solver only performs local optimization.

3.2 Exploration Step
As introduced, the ideal exploration is prohibitive due to the large design

space. Therefore, the design space needs to be properly restricted so that

the exploration can be performed by the automated tools and produce

satisfying results. Given the restriction provided by the designer, as in-

troduced in Section 3.1, here we formulate the exploration step as the

following optimization problem:

𝑑′T ← argmax

𝜙T

𝐹 (𝑂 (T , 𝜙T )) (5)

s.t. 𝑐𝑖 (𝜙T ) < 0, 𝑖 = 0 . . . 𝑁𝑐 ,

𝑑′T𝑗 = 𝑑T𝑗 ,∀𝑗 𝜙
T
𝑗 ∉ 𝜙 ′T

where 𝜙T
𝑗
is the 𝑗𝑡ℎ parameter in 𝜙T , 𝑑T

𝑗
is the value of the 𝑗𝑡ℎ parameter

from the existing design, 𝑑′T is the value of the parameters of the opti-

mized design,𝑑′T
𝑗

is the value of the 𝑗𝑡ℎ parameter of the optimized design,

and all the other symbols are as defined in Section 2 and Section 3.1.

In this formulation of the problem, we perform optimization only over

the parameters 𝜙 ′T , and the multi-objective optimization problem is also

provided with the function 𝐹 to reduce the number of rewards, prioritize

the rewards, or even convert the multi-dimensional rewards into a single

objective function. Thus, the optimization problem will in general be

much more manageable than (3). The inputs to the problem are a library

of components, a reward to be improved, a topology, a design to improve,

and the allowed design choices or modifications that the algorithm can

effect on the original design in order to improve the reward selected by

the user.

4 ILLUSTRATION: ROBOT CAR CONFIGURATION
OPTIMIZATION

To show the effectiveness of our proposed symbiotic design methodology

on the CPS design exploration problem, we apply our design methodology

to two CPS design exploration problems. The first design problem is a

robot car configuration optimization problem, through which we aim to

demonstrate the interactions between designers and automated tools on

a simple design exploration problem and the incremental improvement

achieved by the methodology. The second one is a UAV design problem,

which serves as a complex CPS design problem to show that the proposed

symbiotic methodology can generate unconventional design and optimize

performance.

In this section, we demonstrate how our symbiotic methodology can

be applied to the robot car configuration optimization problem. The UAV

design problem will be introduced in Section 5.

4.1 Design Problem Description
In the robot car configuration problem, the objective is to find configura-

tions of the robot car such that it can reach the target with the minimized

consumed energy and elapsed time in a testing environment. The config-

uration of the robot car is specified by four parameters: number of wheels,
length, width, radius. The number of wheels is a discrete parameter that

determines the number of wheels on one side of the robot car. The length

and the width determine the dimension of the robot car and affect the

distance between the wheels. The radius represents the size of the wheels.

Figure 3a shows an example of the robot car.

The testing environment contains speed bumps and a pole that rep-

resents the target position, as shown in Figure 3b. The oracle simulates

the robot car in the environment and returns the elapsed time and the

consumed energy for reaching the goal as the rewards. The execution

time for the oracle to run one simulation takes about 2 minutes.

4.2 Design Methodology
Using our symbiotic design methodology, experienced designers with

domain knowledge can specify the parameters to optimize, set constraints

on the parameters, and provide an objective function for the rewards.

In this optimization problem, since the dimension of the parameters

are only four, we apply exploration on the continuous variable and let

the designers determine the number of wheels, the constraints, and the

objective function.

The objective function is set as follows:

𝐹 (𝑒, 𝑡) = 𝑒 + 0.5𝑡, (6)



CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

(a) (b)

Figure 3: The visualization extracted by the simulator in the robot
car configuration optimization problem (a) The configuration of
the car. (b) The environment for testing, which contains yellow
speed bumps and a red pole as the target.

Iteration 𝑁𝑤 Optimization tools Result

1 4 Bayesian Optimization 412.485

2 4 Simulated Annealing 358.010

3 3 Bayesian Optimization 325.798

4 2 Bayesian Optimization 279.403

5 2 Simulated Annealing 277.839

Table 1: The design choice and results for each iteration of the
design space exploration on the robot car configuration problem.
𝑁𝑤 denotes the number of wheels and the Result is the objective
function value.

where 𝑒 denotes the energy consumption to complete the goal, 𝑡 is the

time to complete goal, and 𝐹 (𝑒, 𝑡) is the objective function, taking the

rewards 𝑒 and 𝑡 as inputs.

In the exploration, the human designers determine the number of

wheels and set the constraints for the parameters as follows:

𝐿 ∈ (80, 200)
𝑊 ∈ (65, 200)
𝑅 ∈ (36, 200), (7)

where 𝐿 denotes the length,𝑊 represents the width, and 𝑅 is the radius of

the robot car. The underlying exploration algorithm is simulated annealing

and Bayesian optimization.

4.3 Results
Table 1 lists the design choice and the results at each iteration. In the sym-

biotic design process, the designers first perform the optimization with

the number of wheels set to 4. Then the designers proceed with a different

optimization tool and observe an improvement in the objective function.

In iterations 3 and 4, the designers try to change the number of wheels to

explore different design spaces. The results of these two iterations show

that the robot car has a better performance on the objective function

when the number of wheels is set to 2. Finally, the designer performs

the last optimization in the design space with 2 wheels and improves

the design further. The process of the iterated design and the improved

objective function value shows that our symbiotic design methodology

can effectively handling optimization with the interaction between the

designers and the optimization tools.

5 ILLUSTRATION: UAV DESIGN
In this section, we illustrate the methodology in a UAV design problem

to show that the proposed methodology can be applied to complex CPS

design. Based on our symbiotic design methodology, we propose an IC

design inspired methodology for UAV design consisting of the following

steps: first, component selection; second placement in free 3D space, and

third, a routing step which adds a frame to the UAV. The component

selection chooses the component type for a given topology of the UAV by

optimizing the discrete parameters determined by component type and

continuous parameters that describe the behaviors of the components.

The placement optimizes the parameters for physical configuration and

generates the mechanical properties of the UAV. After the rewards are op-

timized, the routing connects the components to ensure that the structure

of the UAV is stable. In the following, we detail the UAV design problem

and describe each step.

5.1 Design Problem Description
The library of components for the UAV design include the component

types of propellers, motors, ESCs, flanges, central support, mechanical

connectors, and batteries. Models for the propellers come from APC

Propellers; we use the motor characteristics from T-motor; our batteries

are modeled after the offering of Turnigy; our structural elements follow

the parameters of DragonPlate’s offering.

Propeller Motor Flange Mechanical
connector

Central
support

ESC

Battery

x4

Figure 4: The topology of the quadrotor. Each box denotes a com-
ponent type.

We have an initial quadrotor design, as shown in Figure 4. Designs are

obtained by providing specific instances for each component type together

with any additional parameters needed to place these components in free

space. The parametrization of this topology gives us the following design

choices: positions and orientations of the four propellers, positions of

the four ESCs and batteries, selection of all components, and control

parameters for an LQR controller. The parametrization thus consists of

the cyber aspect and the physical part of the design. As a result, The

design choices on the parameter is any subset of the parametrization with

at least 12 components and over 30 continuous parameters.

The rewards are computed using a flight simulator. The inputs to this

simulator are the performance files for the propellers and their geometrical

data, the electromechanical characteristics of the motors, and descrip-

tions of the batteries. In addition, the simulator takes as inputs the mass

properties of the UAV. We build assemblies in PTC Creo
1
, a 3D CAD tool,

and obtain from it these mass properties; to make programmatic calls to

Creo, we used the python library Creopyson. The simulator implements

several tests, detailed in our results section. Each of these tests generates

rewards we can use to assess the performance of candidate designs. The

UAV design challenge, together with the libraries of components, and the

simulator was provided by the authors of [15].

5.2 Overview of the Proposed UAV Design
Methodology

Algorithm 1 outlines our proposed IC design inspired methodology for

UAV design.

Lines 2–7 carry out the optimization problem (5). The convergence

of the algorithm is dictated by our optimization method, which is simu-

lated annealing. UpdateComponents carries out component selection for

those components allowed by the design choice on the parametrization

𝜙 ′T
𝑘

. UpdatePropellerGeometry, which updates the geometry, make

changes to those positions and orientations of the input UAV 𝑑T , where
T is the given topology of the UAV. UpdateControl operates similarly,

updating the weights of the LQR controller. For example, 𝜙 ′T
𝑘

may contain

the parameters for the propellers but not for the batteries, thus allow-

ing the propellers be optimized while fixing the battery. MapAndPlace

builds a 3D CAD assembly for the candidate implementation using PTC

Creo and extracts the mass properties of the UAV. These mass properties

are used in the computation of the reward chosen by the user. The can-

didate implementation generated in the optimization loop only carries

out component selection and component placement in free space. The

output of this step goes through another step, which we call routing.

Routing adds tubes and connectors to the design in order for the UAV

1
https://www.ptc.com/en/products/creo

https://www.ptc.com/en/products/creo


Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

Algorithm 1 UAV Design step

Require: existing design 𝑑T with 4 propellers with orientations 𝜙𝑜
and positions 𝜙𝑝 (24 variables), 4 propeller choices 𝜙𝑝𝑐 , 4 motor

choices 𝜙𝑚𝑐 , 4 ESC choices 𝜙𝑒𝑐 , 1 battery choice 𝜙𝑏𝑐 (we let 𝜙
T
be

all parameters), 4 control inputs 𝜙𝑐𝑛𝑡 , and the design choice at itera-

tion 𝑘 including the subset of the parametrization, 𝜙 ′T
𝑘

, constraints

𝐶𝑘 = {𝑐𝑖 |𝑖 = 0 . . . 𝑁𝑐 }, and objective function 𝐹𝑘 to improve.

1: 𝑑′T ← 𝑑T

2: while NotConverged do
3: 𝑑′T𝑝𝑐 , 𝑑

′T
𝑚𝑐 , 𝑑

′T
𝑒𝑐 , 𝑑

′T
𝑏𝑐
← UpdateComponents(𝜙 ′T

𝑘
,𝐶𝑘 , 𝐹𝑘 )

4: 𝑑′T𝑜 , 𝑑′T𝑝 ← UpdatePropellerGeometry(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

5: 𝑑′T ← MapAndPlace(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

6: 𝑑′T𝑐𝑛𝑡 ← UpdateControl(𝜙 ′T
𝑘
,𝐶𝑘 , 𝐹𝑘 )

7: ®𝑟 ← ComputeReward(𝐹𝑘 , 𝑑′T )
8: 𝑑′T ← RouteDesign(𝜙T )
9: return improved design 𝑑′T

to have mechanical integrity as it operates. We now discuss the specific

techniques used in component selection and routing.

5.3 Component selection
In Algorithm 1, 𝜙𝑚𝑐 represents the choice of motors. We have four motors,

yielding four objects to decide in 𝜙𝑚𝑐 . In other words, this parameter

has datatype L×4𝑚 , where𝑚 stands for the motor component type. If we

perform a design step to improve reward 𝑟𝑘 by allowing𝐶 to choose one of

the motors, the component selection algorithm can proceed in three ways.

(i) If the number of potential motors in the library is not large, we could

test all motors and pick the one that maximizes the reward. (ii) We could

cluster motors into similar groups and make a decision hierarchically. (iii)

We could treat the parameters that define a specific motor as continuous

quantities, optimize for those quantities, and pick the library element

which is closest to the optimal values.

The third approach deserves further discussion. Many types of compo-

nents are summarized by few parameters. For example, for our simulator,

a motor is summarized by approximately five numbers. It is thus feasible

to allow our optimizer to find a good value for the parameters; if the num-

ber of values that characterize a component is large, we allow the user

to specify which subset of the parameters of the component should be

used to make the choice of the component. Our component-selection op-

timization constantly takes steps that improve a reward based on changes

to the parameters specified by the user; as there are other component

parameters affected when a specific component is chosen, our algorithm

often updates the values of those parameters according to the design

choice made by the parameters being optimized.

When components are represented by a small set of numbers, the ap-

proach just described is suitable for an implementation. There are some

component types, though, such as propellers, which are often charac-

terized by large performance files. In that case, one could say that the

number of parameters defining a component is very large. Optimizing

over such large parameter space is unfeasible. As a result, we learn sparse

representations of the performance files and carry out the optimization in

the reduced parameter space. More specifically, we use the geometric data

of the propellers as inputs to a neural network that is trained to generate

performance metrics for the propellers. This neural network enables us

to generate performance files for arbitrary propellers.

5.4 Routing
The optimization loop that chooses and places components in Algorithm 1

outputs a design with no frame to keep the UAV together. It is the role

of routing to add tubes and connectors to the UAV. The goal is a solid

(connected) frame that is as light as possible without deflecting overmuch

during flight. While this step could perhaps be achieved more optimally by

using a process like generative design [11], we made the design decision

to restrict the frame to a collection of tubes and consider only static

flight forces, which enabled significantly simpler calculations and a large

reduction in design time.

By representing the mounting point of each motor and the battery as

nodes and connecting tubes as edges, we can parametrize this problem as

a topology optimization on a graph. Thus, we want to minimize total edge

weight while ensuring graph connectedness and satisfying deflection

constraints.

We define the position of each node 𝑝𝑖 ∈ R3, and their displacements

𝑑𝑝𝑖 ∈ R3. The first 𝑙 nodes are "fixed" nodes, which are fixed in space

during the optimization (𝑑
1·𝑙 = 0) and assumed to be already connected

together. These represent the "main body" of the UAV, and would be

secured to a fixture during a frame stiffness test. The next𝑚 nodes rep-

resent "body" nodes, the motor assemblies and other components that

will be secured by the frame. And the next 𝑛 nodes represent any ad-

ditional "designer" nodes the designer may include, in order to allow

for additional design topologies, such as the H-frame. Each node has an

associated external force vector 𝐹𝑖 ∈ R3 representing the weight of the
component and the expected force of the associated propeller in flight,

if present. Note that these are only predefined for "body" nodes, and

must be nonzero. The external forces on fixed nodes are free variables,

representing fixturing forces during a test, while the external force on

"designer" nodes is zero. We define each potential tube 𝑖 𝑗 to have variable

outer radius 𝑟𝑖 𝑗 ∈ R, and constant thickness 𝑡 (a tube is considered not

present if 𝑟𝑖 𝑗 = 0). We assume that each tube is composed of an isotropic

material with Young’s modulus 𝐸. To facilitate more readable equations

we can define initial tube vector 𝐿𝑖 𝑗 = 𝑝 𝑗 − 𝑝𝑖 ∈ R3 and final tube vector

𝐿∗
𝑖 𝑗

= 𝑝 𝑗 +𝑑𝑝 𝑗 − 𝑝𝑖 −𝑑𝑝𝑖 ∈ R3. We assume that the deflection constraints

𝛿𝑖 ∈ R, where ∥𝑑𝑝𝑖 ∥ < 𝛿𝑖 are reasonably chosen such that the frame is

stiffness-limited rather than stress-limited, and that deflections will be

small with respect to tube lengths (∥𝐿∗
𝑖 𝑗
∥ − ∥𝐿𝑖 𝑗 ∥ ≪ ∥𝐿𝑖 𝑗 ∥). The tubes

thus have independent longitudinal stiffness 𝐾𝑙𝑜𝑛𝑔𝑖 𝑗 ∈ R lateral stiffness

𝐾𝑙𝑎𝑡𝑖 𝑗 ∈ R, where

𝐾𝑙𝑜𝑛𝑔𝑖 𝑗 =
2𝜋𝑟𝑖 𝑗 𝑡𝐸

∥𝐿𝑖 𝑗 ∥
and 𝐾𝑙𝑎𝑡𝑖 𝑗 =

3𝐸𝜋 (𝑟4
𝑖 𝑗
− (𝑟𝑖 𝑗 − 𝑡)4)

4∥𝐿𝑖 𝑗 ∥3
.

We can now define the force through each tube 𝐹𝑖 𝑗 = −𝐹 𝑗𝑖 , ∈ R3 as

𝐹𝑖 𝑗 = 𝐾𝑙𝑜𝑛𝑔𝑖 𝑗

((
𝐿∗𝑖 𝑗 ·

𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥
𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥

)
− 𝐿𝑖 𝑗

)
+𝐾𝑙𝑎𝑡𝑖 𝑗

(
𝐿∗𝑖 𝑗 −

(
𝐿∗𝑖 𝑗 ·

𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥
𝐿𝑖 𝑗

∥𝐿𝑖 𝑗 ∥

))
Using these, we can define a nonlinear optimization problem.

min

𝑟𝑖 𝑗 ,𝑑𝑝𝑖 ,𝐹1· · ·𝑙

∑︁
𝑟𝑖 𝑗𝐿𝑖 𝑗

such that 𝐹𝑖 +
∑︁
𝑗

𝐹𝑖 𝑗 = 0

𝑑𝑝𝑖 < 𝛿𝑖

0 ≤ 𝑟𝑖 𝑗 ≤ 𝑟𝑖 𝑗𝑚𝑎𝑥

The free variables here are the tube radii, the node displacements, and

the fixturing forces. The force balance constraint is quartic (linear in

𝑑𝑝 and cubic in 𝑟𝑖 𝑗 ), but since the lateral stiffness is monotonic in 𝑟𝑖 𝑗 , it

tends to perform relatively well in practice. The cost function and other

constraints are linear. Multiple force configurations may be applied in a

single test by duplicating the force and displacement constraints, with

fixed nodes changeable between configurations. Note that by allowing the

tube radii to continuously vary from zero to some maximum, we bypass

the mixed integer program that would otherwise be required to ensure

graph connectedness. If a "body" node is not connected to a fixed node,

the force balance will fail or the displacement will go to infinity. On the

other hand, a "designer" node does not need to be connected, allowing the

user to try things without forcing the optimizer to choose a suboptimal

frame. Of course, tubes cannot be made with arbitrarily small radii, so all

nonzero tubes will have to be increased to some minimum radius 𝑟𝑚𝑖𝑛 in

a post-processing step.

5.5 Results
We demonstrate the application of our iterated optimization methodology

for the exploration of UAVs that perform well on various tests and which



CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA Yu and Incer, et al.

Step Design decision Test Reward

1 Battery type Hover 𝑡

2 Propeller positions and orientations Straight-line 𝑑/10 − 10𝑒

Table 2: Design steps for obtaining geometrically-interesting de-
signs. In the reward column, 𝑡 denotes the flight time, 𝑑 represents
the flight distance, and 𝑒 is the maximum lateral error from the
designated path.

have unusual geometries. First we discuss the tests which our simulator

performs on each design. We discuss our methodology and obtained

designs afterwards.

Our flight simulator implements four tests: hover, straight-line, circle,

and oval. The hover test verifies whether the UAV can rise from the

ground to a height of 150 m at 2 m/s. The test provides a score equal to

the amount of time during which the UAV can rise and hover, capped at

both 200 s and 400 s. The straight line test verifies that the UAV can travel

horizontally, following a straight line; the test provides a score equal to

the distance traveled in meters divided by 10. The minimum score is 200

and the maximum is 400. The circle test requires the UAV to complete a

circular course of 1 km diameter; completing the course yields 300 points.

Finally, the oval test requires the UAV to complete a path of two straight

lines connected by two semicircles; the total length of the path is 3.38 km.

Completing the path yields 200 points; points are added by completing it

faster. Points are subtracted if the designs deviate from the path they are

to follow.

To show the effectiveness of our methodology on design space explo-

ration, we implemented an optimization tool for performing the UAV de-

sign steps discussed in Section 5.2, and conducted a series of experiments

to find UAVs with unusual geometries, but still displaying acceptable

performance in all tests. Our optimization tool is implemented in python,

using the dual-annealing algorithm in the SciPy library as the underlying

optimization mechanism. The optimization tool is capable of returning

all designs that are local minima for the specified reward during design

exploration. The flight simulator is relied upon as the ground tool for the

design process, i.e., the tool can automatically detect whether a design is

valid or not. After the tool provides a set of results, human designers can

pick a set of solutions for further design steps.

Now we discuss the iterated design steps we followed to obtain geomet-

rically interesting designs that perform well in all tests. We will specify

the reward that is being improved and the design decisions passed as

input to the optimization tool at each design step. Table 2 summarizes the

design steps we carried out in our search for geometrically-interesting

and well-performing designs. For each design step, we use as the reward

a metric that indicates the performance of the UAV in one of the tests. To

have better optimization results, the reward function in each design step

is not necessarily the score of the chosen test, even though the objective

of each design step is to maximize the score for the chosen test. Some

score functions do not provide local information of the function, as they

are not continuous and clip the output between zero and the full score,

and thus using the score as a reward may affect optimization efficiency,

make it difficult for the tool to find local minima. We use modified rewards

in some design steps to facilitate the optimization process.

The seed design for our first design step is a symmetric quadcopter,

similar to the seed design shown in Figure 2. In the first design step, we

perform battery selection by exhaustively searching for a battery that

optimizes the reward of hovering time in the hovering test. After this,

we perform propeller placement and orientation. The reward used in

this case if the distance traveled by the UAV in a straight line. We look

attentively at local minima in this optimization step in order to obtain

geometrically-interesting designs.

Figure 5 shows the resulting design path of our optimization process,

together with the scores obtained at each step. The battery selection

returns a design that can pass all tests with scores of 400 on the straight-

line test, 300 on the circle test, 400 on the hover test, and 200 on the oval

test. By optimizing straight-line flight over the placement and orientation

of the propellers, we obtain three geometrically-interesting designs, as

shown in Figure 6. The first design differs from the seed design by the

Su
m

 o
f s

co
re

s f
or

 
H

ov
er

, S
tra

ig
ht

-li
ne

, 
an

d 
C

irc
le

 T
es

ts

1100

S

2.11/2.1 2.3 2.2

200 268 3720
0

Oval Test Score

Figure 5: Design path of sample UAV design. The node 𝑆 is the seed
design, and the numbers on each node indicate the design step in
which the node is obtained.

(a) (b) (c)

Figure 6: Three interesting design geometries obtained in design
step 2.
position of one propeller; this design obtains scores of 400 on the straight-

line test, 300 on the circle test, 400 on the hover test, and 200 on the oval

test. The second design is asymmetric, with two propellers far away from

the center of the UAV. This design achieves 396 on the straight-line test,

300 on the circle test, 400 on the hover test, and 372 on the oval test. The

third design has a propeller above the center plate that holds the battery.

It obtains scores of 400 on the straight-line test, 300 on the circle test, 400

on the hover test, and 268 on the oval test.

The designer may choose the second design as the final result due to

its interesting geometry, better overall performance, and the potential to

be a successful design for real implementation. In terms of geometry, the

first design is not too geometrically interesting, as it only differs in the

position of one propeller when compared with the seed design. Regarding

performance, the second design indeed outperforms all three designs,

as it achieves a higher score on the oval test and almost full scores for

all the other tests. The third design has a potential difficulty regarding

a physical implementation since the propeller which is placed close to

the center could exert a force on the center place. Our simulator does

not consider such interaction between components. This point reinforces

the notion that the interaction between designers and design tools is

crucial. The designer with domain knowledge knows the limitation of the

oracle and can foresee the possible failure of the design, while the design

tools are able to explore vast regions of the design space, sometimes

yielding surprising designs. Through the interaction between designer

and the optimization tools, we can reject some design that an expert could

consider problematic but which the simulator accepts, and then prioritize

the exploration effort for promising designs.

6 CONCLUSIONS
We introduced a symbiotic methodology for the design-space exploration

of CPS design. To the best of our knowledge, this is the first work on the

design methodology that allows direct interaction between the designers

and the automated tools. With the close interaction between designers

and automated tools, the design exploration is iteratively guided by the

domain knowledge of the designers. The design choice allows the designer

to guide the exploration to discover unconventional designs and optimize

the system performance. We illustrate the methodology by applying it to a

robot car configuration optimization problem and a UAV design problem.

The results show that our symbiotic methodology can efficiently and

effectively discover unconventional design and optimize the objective for

the design problem, and thus is promising for reducing the design cycle

for complex CPS design.

ACKNOWLEDGMENTS
This work is supported by the DARPA LOGiCS project under contract

FA8750-20-C-0156.



Symbiotic CPS Design-Space Exploration through Iterated Optimization CPS-IoT Week Workshops ’23, May 09–12, 2023, San Antonio, TX, USA

REFERENCES
[1] J. Bakakeu, J. Fuchs, T. Javied, M. Brossog, J. Franke, H. Klos, W. Eberlein, S. Tolksdorf, J.

Peschke, and L. Jahn. 2018. Multi-Objective Design Space Exploration for the Integration

of Advanced Analytics in Cyber-Physical Production Systems. In 2018 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM). 1866–1873.
https://doi.org/10.1109/IEEM.2018.8607483

[2] Albert Benveniste, Benoît Caillaud, Dejan Nickovic, Roberto Passerone, Jean-Baptiste

Raclet, Philipp Reinkemeier, Alberto Sangiovanni-Vincentelli, Werner Damm, Thomas A.

Henzinger, and Kim G. Larsen. 2018. Contracts for System Design. Foundations and
Trends in Electronic Design Automation 12, 2-3 (2018), 124–400. https://doi.org/10.1561/

1000000053

[3] DARPA [n. d.]. Symbiotic Design for Cyber Physical Systems. https://www.darpa.mil/

program/symbiotic-design-for-cyber-physical-systems. Accessed: 2022-05-20.

[4] Patricia Derler, Edward A. Lee, Stavros Tripakis, and Martin Törngren. 2013. Cyber-

Physical System Design Contracts. In Proceedings of the ACM/IEEE 4th International
Conference on Cyber-Physical Systems (Philadelphia, Pennsylvania) (ICCPS ’13). Associa-
tion for Computing Machinery, New York, NY, USA, 109–118. https://doi.org/10.1145/

2502524.2502540

[5] John Finn, Pierluigi Nuzzo, and Alberto Sangiovanni-Vincentelli. 2015. A mixed discrete-

continuous optimization scheme for Cyber-Physical System architecture exploration. In

2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 216–223.
https://doi.org/10.1109/ICCAD.2015.7372573

[6] John Fitzgerald, Carl Gamble, Richard Payne, and Benjamin Lam. 2017. Ex-

ploring the Cyber-Physical Design Space. INCOSE International Sympo-
sium 27, 1 (2017), 371–385. https://doi.org/10.1002/j.2334-5837.2017.00366.x

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2017.00366.x

[7] Srivatsan Krishnan, Zishen Wan, Kshitij Bhardwaj, Paul Whatmough, Aleksandra Faust,

Sabrina Neuman, Gu-Yeon Wei, David Brooks, and Vijay Janapa Reddi. 2021. AutoPilot:

Automating SoC Design Space Exploration for SWaP Constrained Autonomous UAVs.

arXiv:2102.02988 [cs.RO]

[8] Edward A. Lee. 2015. The Past, Present and Future of Cyber-Physical Systems: A Focus

on Models. Sensors 15, 3 (2015), 4837–4869. https://doi.org/10.3390/s150304837

[9] Edward A. Lee. 2016. Fundamental Limits of Cyber-Physical Systems Modeling. ACM
Trans. Cyber-Phys. Syst. 1, 1, Article 3 (Nov. 2016), 26 pages. https://doi.org/10.1145/

2912149

[10] Azad M. Madni and Michael Sievers. 2014. Systems Integration: Key Perspectives, Ex-

periences, and Challenges. Systems Engineering 17, 1 (2014), 37–51. https://doi.org/10.

1002/sys.21249 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21249

[11] Sangeun Oh, Yongsu Jung, Seongsin Kim, Ikjin Lee, and Namwoo Kang. 2019. Deep

generative design: Integration of topology optimization and generative models. Journal
of Mechanical Design 141, 11 (2019).

[12] Alberto Sangiovanni-Vincentelli. 2007. Quo Vadis, SLD? Reasoning About the Trends

and Challenges of System Level Design. Proc. IEEE 95, 3 (2007), 467–506. https://doi.org/

10.1109/JPROC.2006.890107

[13] Alberto Sangiovanni-Vincentelli, Werner Damm, and Roberto Passerone. 2012. Taming

Dr. Frankenstein: Contract-Based Design for Cyber-Physical Systems*. European Journal
of Control 18, 3 (2012), 217–238. https://doi.org/10.3166/ejc.18.217-238

[14] Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas Kottenstette, Panos

Antsaklis, Vijay Gupta, Bill Goodwine, John Baras, and Shige Wang. 2012. Toward a

Science of Cyber–Physical System Integration. Proc. IEEE 100, 1 (2012), 29–44. https:

//doi.org/10.1109/JPROC.2011.2161529

[15] James D. Walker, F. Michael Heim, Bapiraju Surampudi, Pablo Bueno, Alexander Carpen-

ter, Sidney Chocron, Jon Cutshall, Richard Lammons, Theodore Bapty, Brian Swenson,

and Sydney Whittington. 2022. A Flight Dynamics Model for Exploring the Distributed

Electrical eVTOL Cyber Physical Design Space. In 2022 IEEE Workshop on Design Automa-
tion for CPS and IoT (DESTION). 7–12. https://doi.org/10.1109/DESTION56136.2022.00008

https://doi.org/10.1109/IEEM.2018.8607483
https://doi.org/10.1561/1000000053
https://doi.org/10.1561/1000000053
https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
https://www.darpa.mil/program/symbiotic-design-for-cyber-physical-systems
https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1145/2502524.2502540
https://doi.org/10.1109/ICCAD.2015.7372573
https://doi.org/10.1002/j.2334-5837.2017.00366.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2334-5837.2017.00366.x
https://arxiv.org/abs/2102.02988
https://doi.org/10.3390/s150304837
https://doi.org/10.1145/2912149
https://doi.org/10.1145/2912149
https://doi.org/10.1002/sys.21249
https://doi.org/10.1002/sys.21249
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/sys.21249
https://doi.org/10.1109/JPROC.2006.890107
https://doi.org/10.1109/JPROC.2006.890107
https://doi.org/10.3166/ejc.18.217-238
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1109/DESTION56136.2022.00008

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Elements in CPS Design Space Exploration Problem
	2.2 CPS Design Space Exploration Problem

	3 The Symbiotic CPS Design Space Exploration Methodology
	3.1 Design Choice Step
	3.2 Exploration Step

	4 Illustration: Robot Car Configuration Optimization
	4.1 Design Problem Description
	4.2 Design Methodology
	4.3 Results

	5 Illustration: UAV design
	5.1 Design Problem Description
	5.2 Overview of the Proposed UAV Design Methodology
	5.3 Component selection
	5.4 Routing
	5.5 Results

	6 Conclusions
	Acknowledgments
	References

