
Labelled Control Improvisation

Eric Vin, Daniel J. Fremont
evin@ucsc.edu, dfremont@ucsc.edu

Department of Computer Science and Engineering
University of California, Santa Cruz

June 2021

Abstract

The classic Control Improvisation problem allows one to extend traditional synthesis problems, by
balancing control over what is generated, with how randomly it is generated. In this paper, we
propose Labelled Control Improvisation, an extension of classic Control Improvisation that allows
for greater control over randomness via the addition of a labelling specification. By assigning one
and only one label to every improvisation, we avoid the immediate exponential time complexity of
multiple soft constraints, while still allowing for more fine tuned control. We present two different
problems, the simpler Labelled Control Improvisation problem, in which explicit randomness
bounds are provided, followed by the more natural Maximum Entropy Labelled Control
Improvisation problem, which forgoes some of the explicit constraints and instead seeks to generate
improvisations in a way that maximizes entropy. We also present several motivating examples that
illustrate the usefulness of Labelled Control Improvisation, and provide upper and lower bounds on
the complexity of these problems when using a variety of constraint and labelling specifications.

(This document consists of Eric Vin’s senior thesis for the Computer Science B.S. at UCSC, with

this title page added for publication as a technical report.)

Technical Report # UCSC-SOE-21-09

Labelled Control Improvisation

Eric Vin
evin@ucsc.edu

Department of Computer Science and Engineering
University of California, Santa Cruz

June 2021

A thesis submitted to the faculty of

The University of California, Santa Cruz

in partial fulfillment of the requirements for the degree of

Bachelor of Science

Reading Committee:

Professor Daniel Fremont (Chair)

Professor Seshadhri Comandur

Contents

1 Introduction 1

1.1 Related Work . 1

1.2 Motivating Examples . 1

1.2.1 Robotic Planning . 2

1.2.2 Fuzz Testing . 3

1.3 Classic Control Improvisation . 4

2 Labelled Control Improvisation 5

2.1 Definition . 5

2.2 Necessary and Sufficient Conditions for Labelled Control Improvisation 6

3 Maximum Entropy Labelled Control Improvisation 14

3.1 Definition . 14

3.2 Construction of Maximum Entropy Distribution . 15

3.2.1 Initial Problem . 15

3.2.2 Bi-Uniform Label Class Distribution . 15

3.2.3 Optimization of Distribution . 19

3.3 Algorithm for Computing Maximum Entropy Distribution . 19

4 Time Complexity for LCI and MELCI Problems 21

4.1 Definitions . 21

4.2 Construction of Labelling Function . 21

4.3 Essential Operations . 22

4.4 Polynomial Relative to an Oracle Time Improvisation Schemes . 22

4.5 Upper Bound on Time Complexity for Improvisation Schemes . 23

4.6 Time Complexity for Choice of Specification . 23

4.7 Complexity of Motivating Examples . 28

4.7.1 Robotic Planning . 28

4.7.2 Fuzz Testing . 28

5 Conclusion 29

1

Abstract

The classic Control Improvisation problem allows one to extend traditional synthesis problems, by balancing control over
what is generated, with how randomly it is generated. In this paper, we propose Labelled Control Improvisation, an
extension of classic Control Improvisation that allows for greater control over randomness via the addition of a labelling
specification. By assigning one and only one label to every improvisation, we avoid the immediate exponential time
complexity of multiple soft constraints, while still allowing for more fine tuned control. We present two different problems,
the simpler Labelled Control Improvisation problem, in which explicit randomness bounds are provided, followed by the
more natural Maximum Entropy Labelled Control Improvisation problem, which forgoes some of the explicit constraints
and instead seeks to generate improvisations in a way that maximizes entropy. We also present several motivating examples
that illustrate the usefulness of Labelled Control Improvisation, and provide upper and lower bounds on the complexity
of these problems when using a variety of constraint and labelling specifications.

Chapter 1

Introduction

In this paper we seek to provide another tool for Algorithmic Improvisation, which is a framework for augmenting a system
with randomness while preserving key properties about the system. The core computational problem of Algorithmic
Improvisation, Control Improvisation allows one to specify a system that must generate improvisations that meet a hard
constraint all the time, a soft constraint within a certain percentage of the time, and be sufficiently random. In this work,
we seek to augment classic Control Improvisation (CI) with a labelling specification that assigns one and only label to
all improvisations our system generates. We then seek to extend or modify the randomness constraints to apply over
labels, instead of merely over all improvisations. This allows us finer control over how exactly we define the randomness
requirements in our problem. Without the addition of the soft constraint, this problem could easily be transformed into
solving multiple instances of classic CI independently for each set of labelled words. However, our definition includes a soft
constraint, like in classic CI, that must be met within a certain tolerance while balancing the randomness requirements
of words, which makes for a more complex problem.

We begin by introducing several motivating examples. We then construct a definition for basic Labelled Control
Improvisation (LCI), in which one provides marginal and conditional randomness bounds on selecting improvisations
with a certain label, along with a soft and hard constraint. Following this, we move on to the more natural Maximum
Entropy Labelled Control Improvisation (MELCI), in which the conditional randomness bounds for improvisations are
removed and instead the distribution generated is the one that maximizes entropy while meeting all other constraints.
We then discuss the time complexities for the LCI and MELCI problems given for different classes of constraint/labelling
specifications. Finally, we revisit our motivating examples to provide high level guidance on how one might implement
them using the constructions in this paper.

1.1 Related Work

Our work builds off of the work of Fremont et al. [1, 2, 3], which itself generalizes the work of Donzé et al. [4, 5]. More
specifically, our work extends the Control Improvisation problem, like the work done by Fremont and Seshia [6] for the
reactive case. In addition, our work includes a problem, Maximum Entropy Labelled Control Improvisation, that seeks
to calculate an improvising distribution that maximizes entropy, similar to the work done by Vazquez-Chanlatte et al [7]
also for the reactive case. In addition, we should note that the LCI problem can be encoded as an instance of the multiple
soft constraint control improvisation laid out in [3]. However, with the restriction that an improvisation can have one and
only one label, we avoid the exponential runtime encountered in that extension.

1.2 Motivating Examples

In this section we will present several examples in which one could apply classic CI as laid out by Fremont et al. [1, 2, 3].
We will then show how, by labelling our improvisations and enforcing randomness over these labels, we can exert more
control over how our improvisations are generated, and thus have an overall more useful improviser.

1

1.2.1 Robotic Planning

In the original CI robotic planning problem [3, Chapter 6], we seek to find sufficiently random routes for a patrolling robot
that meet some mission and safety rules all the time (Hard constraints), along with some efficiency rules that we would
like to meet a certain percentage of the time (Soft constraints). Consider a similar robotic planning problem, illustrated
in Figure 1.1 in which a robot must patrol a museum with one large main passageway and two smaller side entrances,
and ideally catch any thieves before they can make off with one of the exhibits. Our goal is to generate paths through
the museum, which take the form of a sequence of moves up, down, left, right, or stop and meet several conditions while
being sufficiently random. We assume that the robot can only move through from square to square up, down, left, and
right (i.e. no diagonal movement). Impassable walls are indicated by black squares, the 4 objectives, in this case the
exhibits, via the O# notating, and the three main entrances connecting the upper and lower part of the board via the
E# notation.

Figure 1.1: Robotic Planning Example

As in the original robotic planning problem, we would like the robot to fulfill several hard and soft conditions:

Hard Conditions:

1. The robot must respect the rules of the terrain (i.e. no entering black tiles or moving off the map)

2. The robot must visit all objectives at least once

3. The robot must start and end at the home base (to maintain consistency between patrols)

4. The path length can be at most 100 tiles (max battery life)

Soft Conditions:

1. The robot’s patrol should be less than or equal to 30 tiles at least 75% of the time (so we minimize charging time,
and in turn extended periods of downtime that a thief could exploit)

Randomness Conditions:

1. The probability of the robot taking any path meeting the requirements is between some lower and upper randomness
bounds, ρ and λ (so the thief has fairly limited information about where our robot will be at any given time)

This provides a patrolling schedule that works fairly well, with one main problem. Potential paths that enter and
exit through the wider main entrance, E2, tend to be shorter and more numerous compared to the long and narrow side
entrances, E1 and E3. As we only enforce randomness over possible paths and our soft constraint rewards shorter paths,

2

this means that our improviser will give our robot a relatively low chance of patrolling the side entrances, which a thief
could potentially exploit. Ideally, we would want the thief to have limited knowledge of which entrance the robot would
enter or leave the building from, by bounding the chances of each entrance being used to a fairly uniform spectrum. This
way, it is more difficult for them to plan their entrance/egress without running into the robot in the hallway.

A much more comprehensive solution is one in which we label paths by which entrance they take into the building,
and optionally which one they take to leave, for a total of 3 or 9 labels, and then enforce randomness over these as well.

For example, one of the labels could be (E1, E3), indicating the robot entered the building via the E1 entrance,
patrolled over all objectives, and left via the E3 entrance back to its charging station. For our randomness bounds over
these labels, we could be as strict as possible and require that the probability of a generated path being in a certain label
must be exactly 1

9 (by setting the lower and upper bound to 1
9). However,this may render our soft constraint infeasible. If

this is the case, we could relax these bounds by requiring that the probability of a generated path being in a certain label
be between 1

7 and 1
11 , which gives our improviser more freedom which it could perhaps use to satisfy the soft constraint.

In this way, we can make sure we don’t violate our soft constraint, while balancing picking a random path with other
situation specific requirements, in this case the entryway used. If our parameters are infeasible, we would like to know that
so we can decide whether to reformulate our problem, give up, or relax our constraints. Labelled Control Improvisation
will allow us to do just that.

1.2.2 Fuzz Testing

Another example in which Labelled Control Improvisation provides significantly improved usefulness is fuzz testing. In this
example, we will consider fuzz testing a compiler, or really any program, whose input can be described by a unambiguous
context free grammar. Our goal is to find inputs in this grammar that cause our compiler to hang indefinitely or crash.
To do this, we are interested in generating both inputs that are syntactically correct and inputs that are not syntactically
correct but may be close. This allows us to try to maximize the strings that invoke the interior functionality of our
program, while also checking to see if undefined inputs are handled gracefully. We also want our inputs to remain
relatively short most of the time, so that we can test quickly and find relatively simple failure cases that are easy to
understand. Consider the following constraints:

Hard Conditions:

1. All generated inputs must conform to a UCFG composed of all valid inputs and expanded slightly to include some
invalid inputs.

2. All generated inputs must be no more than 100 tokens

Soft Conditions:

1. The generated input must be under 50 tokens, 75% of the time.

Randomness Conditions:

1. The probability of generating any input is between some lower and upper randomness bounds, ρ and λ (so that we
can ensure we are not neglecting any portion of the space too much)

This would provide a satisfactory generator for a fuzz tester, but it would be useful to have more fine grained control.
Say for example that after performing some analysis of our grammar, we become aware of several relatively uncommon
syntactical element that trigger complicated functions inside our compiler. It is in our interest to ensure we spend enough
time testing the functionality associated with these more complicated, and thus more likely to contain an error, functions.
To ensure, this, we could provide a labelling function that partitions our overall grammar into classes, perhaps by which
of these syntactical elements they contain. We can then enforce randomness bounds on these labels. This way we can
ensure we are spending an appropriate amount of time on the inputs that are more likely to invoke a crash, while ensuring
we don’t neglect any part of our space and that our inputs are, as a whole, relatively short and simple.

3

1.3 Classic Control Improvisation

We will now formally introduce the problem we tend to extend in this paper, Control Improvisation. To differentiate it
from the two extensions we will introduce, we will refer to it as classic Control Improvisation, or classic CI. In this paper,
we will use the definitions laid out by Fremont [3, Section 3.1]. Let a hard specification, H, encode a constraint that we
must always satisfy. Let a soft specification, S, encode a constraint that we must satisfy within a certain error tolerance.
We can define the I and A sets below.

Definition 1.3.1. Fix a finite alphabet Σ, a hard specification H over that alphabet, and length bounds m,n ∈ N. An
improvisation is any word w ∈ L(H) such that m ≤ |w| ≤ n. Let I denote the set of all improvisations.

Definition 1.3.2. Fix a soft specification S and an error probability ε ∈ [0, 1]. An improvisation w ∈ I is admissible if
w ∈ L(S). Let A denote the the set of all admissible improvisations.

Following from these definitions, we can define a Control Improvisation instance, an improvising distribution, and the
Control Improvisation problem.

Definition 1.3.3. (Control Improvisation Instance) In general, we will use the symbol C to denote an instance of CI,
whether it be classic CI, LCI, or MELCI. An instance of classic CI is defined as a tuple, C = (H,S,m, n, ε, λ, ρ). Let H,
S, m, n, and ε be defined as above. Let λ, ρ ∈ Q such that 0 ≤ λ ≤ ρ ≤ 1.

Definition 1.3.4. (Control Improvisation Improvising Distribution) Given a CI instance C = (H,S,m, n, ε, λ, ρ), a
distribution D : Σ∗ → [0, 1] is an improvising distribution if it satisfies all of the following constraints:

1. Hard Constraint: Pr[w ∈ I | w ← D] = 1

2. Soft Constraint: Pr[w ∈ A | w ← D] ≥ 1− ε

3. Randomness Constraint: ∀w ∈ I, λ ≤ D(w) ≤ ρ

Definition 1.3.5. (Control Improvisation Problem) Fix a CI instance C. We say C is feasible if an improvising distribution
exists. An improviser for C is a probabilistic algorithm, taking no input and with finite expected runtime, whose output
distribution is an improvising distribution.

The Control Improvisation problem is to determine if C is feasible, and if so to generate an improviser for C. For this
problem, we encode m and n in unary and encode λ, ρ, and ε in binary.

Throughout this paper we will expand and modify the above definitions into the LCI and MELCI problems.

4

Chapter 2

Labelled Control Improvisation

We begin the contributions by introducing the Labelled Control Improvisation problem. This problem is the simplest
to implement, and the one that gives the user maximum control over the resulting distribution. However, this control
comes with a trade off, ease of use. In Labelled Control Improvisation one must specify acceptable bounds on randomness
for all labels and for words in each label class. This provides an excellent starting point for tackling Labelled Control
Improvisation in general, but we will later address a more natural formulation of the problem in Section 3, the Maximum
Entropy Labelled Control Improvisation problem.

2.1 Definition

In this section we establish the definitions for the Labelled Control Improvisation problem. In general, one should assume
the definitions start from those laid out in Section 1.3. Like before we begin with the definition of an LCI instance.

Definition 2.1.1. (LCI Instance) Let C = (H,S, L,m, n, ε, λ, ρ, α̂, β̂) be a Labelled Control Improvisation, or LCI,
instance.

H,S, L,m, n, ε, λ, and ρ are defined as in classic CI. Define L as the encoding of a labelling function L : Σ∗ → Ω,
where Ω is the corresponding set of labels. Let α̂ and β̂ be two lists of length |Ω|, containing values in [0, 1] ∩ Q where

∀i ∈ {1, . . . , |Ω|}, α̂i ≤ β̂i.
For the ith label `i ∈ Ω, the we can define a set Ii containing all words with the label `i also accepted by the hard

constraint and of the correct length. Formally, Ii = {w ∈ Σ∗ | L(w) = `i} ∩ L(H) ∩ Σm:n. Using this, we define
I =

⋃
i∈|Ω| Ii. We will refer to each Ii as a label class. As each word in I is assigned one and only one label by L, it

follows that the Ii classes partition I.

We can similarly define the Ai classes as Ai = Ii ∩ L(S). Let A =
⋃
i∈|Ω|Ai. Similarly to above, it is also trivial to

show that the Ai classes partition A. Also of note and following from the definition is that Ai ⊆ Ii.

Using the definition of an LCI instance, we can define an improvising distribution and the LCI problem.

Definition 2.1.2. (LCI Improvising Distribution) Given an LCI instance C = (H,S, L,m, n, ε, λ, ρ, α̂, β̂) as described
above, a distribution on words D : Σ∗ → [0, 1] is an improvising distribution if it satisfies the following constraints,

1. Hard Constraint: Pr[w ∈ I | w ← D] = 1

2. Soft Constraint: Pr[w ∈ A | w ← D] ≥ 1− ε

3. Randomness over Labels: ∀i ∈ {1, . . . , |Ω|}, λ ≤ Pr [w ∈ Ii | w ← D] ≤ ρ

4. Randomness over Words: ∀i ∈ {1, . . . , |Ω|}, ∀y ∈ Ii, αi ≤ Pr[y = w | w ∈ Ii, w ← D] ≤ βi

Note that we redefine purpose of the λ and ρ parameters to enforce randomness over the label classes, and we use α̂
and β̂ to enforce randomness within each label class.

5

For ease of notation we also introduce notation to describe the marginal and conditional probability of a distribution.
Let D be an arbitrary distribution over I. DM (i) is the marginal distribution of selecting a word in Ii and Di(w)
is the conditional probability of selecting w knowing that the word we select will be in Ii.Formally, Di(y) = Pr[y =
w | w ∈ Ii, w ← D] and DM (i) = Pr[w ∈ Ii | w ← D]. Note that following from the chain rule, for any w ∈ Ii,
D(w) = DM (i)Di(w)

Definition 2.1.3. (LCI Problem) We say that an LCI instance is feasible if there exists an improvising distribution for
it. We define an improviser for an LCI instance as a probabilistic algorithm which takes no input and finite expected
runtime, whose output distribution is an improvising distribution. Given an LCI instance C, we define the LCI problem
as determining if C is feasible, and if is, generating an improviser for C.

2.2 Necessary and Sufficient Conditions for Labelled Control Improvisa-
tion

In this section we seek to establish the intuition for conditions that are necessary and sufficient for an instance of LCI to
be solvable. We will then formalize these conditions and prove they are necessary and sufficient.

To begin with, the hard constraint can be trivially satisfied by any distribution over I, and of course can only be
satisfied by a distribution over I.

Checking whether or not we can satisfy the λ/ρ randomness constraint is relatively straightforward. We must first
check whether there are enough labels, this way no label must necessarily have more than ρ probability of being selected.
We also must check that there are not too many labels, such that all labels can have at least λ probability of being
selected. Formally, we can write this as 1

ρ ≤ |Ω| ≤
1
λ

The α̂ and β̂ randomness constraints are similarly checked. There must be enough words in every Ii, so that we can
ensure no word must have more than β conditional probability of being selected. Similarly, there must not be too many
words in any Ii, such that all words can be selected with conditional probability at least α. Formally, we can write this
as ∀ 1 ≤ i ≤ |Ω|, 1

β ≤ |Ii| ≤
1
α .

The soft constraint is somewhat trickier to reason with. Intuitively however, if the distribution that maximizes the
amount of probability given to elements of A without violating the other constraints fails to satisfy the soft constraint,
then no other distribution will work either. The optimal way to assign each label distribution Di is described as the
“clamping” method by Fremont [3, p. 28]. First we attempt to assign beta probability βi to each element of Ai for each
i, if we can do so without violating the αi bound on all the Ii\Ai elements. If we cannot do this, we then assign the
minimum αi to all elements of Ii\Ai, and distribute the remaining uniformly over Ai. In this way we maximize the
amount each label distribution picks an element in A.

We must also choose a distribution D that maximizes the overall probability of picking an element in A. Here we
take the greedy approach of giving as much marginal probability as possible to the label classes that have the highest
conditional probability of picking an element in A without violating our randomness requirements. Let δ(i) be the
conditional probability of selecting a word in Ai if we know the word selected is in Ii, or formally δ(i) =

∑
w∈Ai Di(w)

. Using our above construction, we set δ(i) = 1 − max(βi|Ai|, 1 − αi|Ii\Ai|). Let H be an ordered list containing all
the label indices {1, . . . , |Ω|}, with Hj for any 1 ≤ j ≤ |Ω| indicating the jth value of H. Let H be ordered in such a
way that ∀ 1 ≤ i < j ≤ |Ω|, δ(Hi) ≥ δ(Hj). We also define k as the largest possible number of label distributions that
can be assigned ρ probability while still allowing all remaining label distributions to be assigned at least λ probability.
We will assign the label classes from index [1 : k] of H marginal probability ρ, and the elements from index [k + 2 : |Ω|]
probability λ, unless |Ω| < k + 2. In making this assignment, there may be a quantity of probability remaining which
we will call ν, where λ ≤ ν < ρ. We assign the element at index [k + 1] to this value ν, unless |Ω| < k + 1. In this
way, we maximize the chance of picking an element in A by maximizing the marginal probability of the label classes
that have the highest conditional probability of picking strings that are most likely to pick an element of A. It stands to
reason that if we cannot satisfy the soft constraint in this way, then no other distribution will satisfy the soft constraint
as they will pick elements of A with equal or lower probability. To formalize this, we can write the following inequality,

1− ε ≤
∑k
i=1 (λδ(Hi)) + νδ(Hk+1) +

∑|Ω|
i=k+2 (ρδ(Hi)).

We now present a formalized version of these conditions, along with a proof that they are necessary and sufficient.

Theorem 2.2.1. A Labelled Control Improvisation instance is solvable if and only if the following conditions hold,

6

1.
1

ρ
≤ |Ω| ≤ 1

λ

2. ∀ 1 ≤ i ≤ |Ω|, 1

βi
≤ |Ii| ≤

1

αi

3. 1− ε ≤
k∑
i=1

(λδ(Hi)) + νδ(Hk+1) +

|Ω|∑
i=k+2

(ρδ(Hi))

Proof.
(⇒) If the above conditions, hold the labelled control improvisation instance is solvable.

Assume the above conditions hold. We seek to show that there then exists an improvising distribution that satisfies the
requirements of the LCI problem. We show this constructively, thereby providing an algorithm which could be encoded
in an improviser to define a distribution over all Ii\Ai and Ai classes, from which we would then sample uniformly.

We will first define Di(w) for each w ∈ Ii and all i as follows. Let εiopt = max(1 − βi|Ai|, αi|Ii\Ai|). Di splits εiopt
probability uniformly over all elements of Ii\Ai, and splits 1 − εiopt probability uniformly over all elements of Ai. Note
that by Condition 2, αi|Ii\Ai| ≤ αi|Ii| ≤ 1 as |Ii\Ai| ≤ Ii. This along with the fact that αi|Ii\Ai| is implicitly greater
than 0 and εiopt ≥ αi|Ii\Ai| imply 0 ≤ εiopt ≤ 1.

We will now define DM (i) for all i ∈ {1, . . . , |Ω|} . First we will define k, which is the largest possible number of
label classes that can be assigned ρ marginal probability while still allowing all remaining label classes to be assigned

at least λ marginal probability. Let k =
⌊

1−|Ω|λ
ρ−λ

⌋
, unless λ = ρ in which case k = 0 to simplify our function. We will

now define δ(i) for a label class Ii as δ(i) =
∑
w∈Ai Di(w). Following from the construction of Di(w) above, note that

δ(i) = 1−max(1− β̂i|Ai|, α̂i|Ii\Ai|). Define H as an ordered list containing all the label indices {1, . . . , |Ω|}, with Hj for
any 1 ≤ j ≤ |Ω| indicating the jth value of H. Let H be ordered in such a way that ∀ 1 ≤ i < j ≤ |Ω|, δ(Hi) ≥ δ(Hj),
i.e. ordering the indices of the label classes in non-increasing order by their conditional probability of selecting a string
in A. For ease of notation, ∀ i > |Ω|, δ(i) = 0. Finally, define ν = 1 − ρk − λ(|Ω| − k − 1) where ν will be the leftover
probability after the first k label classes with respect to the ordering of H have been assigned ρ marginal probability and
the last |Ω| − k − 1 classes with respect to the ordering of H have been assigned λ marginal probability.

We can then define DM (i), where i is at index j in H, as follows,

DM (i) = DM (Hj) =


ρ j ≤ k
ν j = k + 1

λ j > k + 1

We illustrate this process in Figure 2.1.

Figure 2.1: LCI Soft Constraint Construction

7

Note that
∑|Ω|
i=1DM (i) = 1, which we will show formally in the Randomness over Labels section. Now following

from the fact that the Ii sets partition I and both DM and all the Di are probability distributions, we can define our
distribution D for each w ∈ Ii as D(w) = DM (i)Di(w).

For this distribution to be an improvising distribution, we must satisfy all the constraints outlined in the Formalized
Labelled Control Improvisation Definition. Below, we prove that we satisfy each one,

Hard Constraint: (Pr[w ∈ I | w ← D] = 1)

This constraint is trivially satisfied, as by definition D only samples over I, which is only composed of words
satisfying the hard constraint.

Soft Constraint: (Pr[w ∈ A | w ← D] > 1− ε)

To prove that Pr[w ∈ A | w ← D] > 1− ε, we can equivalently show,

1− ε ≤
∑
w∈A

D(w)

Before we continue, recall that δ(i) is defined as δ(i) = 1 − εiopt. As εiopt is by definition the amount of probability

allocated to Ii\Ai, and Ii\Ai and Ai partition Ii which is what Di is defined over, it follows that 1 − εiopt is the
probability allocated over all elements of Ai by Di. Combining these two, we can conclude that δ(i) is in fact the
probability of the distribution returning an element of Ai, or A as Ai ⊆ A and (Ii\Ai) ∩ A = ∅. As the list H

contains every element of {1, . . . , |Ω|}, albeit in an arbitrary order, it follows that the
∑|Ω|
i=1DM (i)δ(Hi) equals the

total probability of generating an element of A. We perform this transformation below,

∑
w∈A

D(w) =

|Ω|∑
i=1

∑
w∈Ai

DM (i)Di(w)

=

|Ω|∑
i=1

DM (i)δ(i)

=

k∑
i=1

DM (i)δ(i) +

k+1∑
i=k+1

DM (i)δ(i) +

|Ω|∑
i=k+2

DM (i)δ(i)

=

k∑
i=1

λδ(Hi) + νδ(Hk+1) +

|Ω|∑
i=k+2

ρδ(Hi)

Note that this is well defined, as if k + 1 > |Ω|, then δ(Hk+1) = 0 nullifying the term, and if k + 2 > |Ω|, there are
no integers satisfying the summation so it is also nullified. Combining the two above equations, we can see that we

have satisfied the Soft Constraint if 1 − ε <
∑k
i=1 (λδ(Hi)) + νδ(Hk+1) +

∑|Ω|
i=k+2 (ρδ(Hi)). However, as we have

assumed Condition 1 above, we know this is true, and we have therefore satisfied the Soft Constraint.

Randomness over Labels: (∀ 1 ≤ i ≤ |Ω|, λ ≤ Pr [w ∈ Ii | w ← D] ≤ ρ)

First, recall that DM (i) = Pr [w ∈ Ii | w ← D]. Looking at our construction above, ∀ 1 ≤ i ≤ |Ω|, DM (i) ∈ {λ, ρ, ν}.
It is trivial to see that λ and ρ satisfy our randomness constraint over labels. However, we must prove that λ ≤ ν ≤ ρ.
Recall that we assume Condition 1, which states 1

ρ ≤ |Ω| ≤
1
λ .

We will separate out the case where λ = ρ, as that directly implies ν = λ.

8

ν = 1 + λk − ρk − |Ω|λ+ λ

= 1 + λk − λk − |Ω|λ+ λ

= 1− |Ω|λ+ λ

= 1 + λ(1− |Ω|)

≥ 1 + λ(1− 1

λ
)

= 1

ν = 1 + λk − ρk − |Ω|λ+ λ

= 1 + ρk − ρk − |Ω|ρ+ ρ

= 1− |Ω|ρ+ ρ

= 1 + ρ(1− |Ω|)

≤ 1 + ρ(1− 1

ρ
)

= 1

For the general case, consider the following manipulations,

ν = 1 + λk − ρk − |Ω|λ+ λ

= 1 + λ

⌊
1− |Ω|λ
ρ− λ

⌋
− ρ

⌊
1− |Ω|λ
ρ− λ

⌋
− |Ω|λ+ λ

= 1 + (λ− ρ)

⌊
1− |Ω|λ
ρ− λ

⌋
− |Ω|λ+ λ (Recall by definition λ ≤ ρ)

≥ 1 + (λ− ρ)
1− |Ω|λ
ρ− λ

− |Ω|λ+ λ

= 1 + (λ− ρ)
|Ω|λ− 1

λ− ρ
− |Ω|λ+ λ

= 1 + |Ω|λ− 1− |Ω|λ+ λ

= λ

∴ ν ≥ λ

= 1 + (λ− ρ)

(
|Ω|λ− 1

λ− ρ
− ι
)
− |Ω|λ+ λ (For some ι < 1)

= 1 + |Ω|λ− 1− ιλ+ ερ− |Ω|λ+ λ

= −ιλ+ ιρ+ λ

= ι(ρ− λ) + λ

< ρ− λ+ λ

= ρ

∴ ν < ρ

We must also prove that
∑|Ω|
i=1DM (i) = 1. We ignore the case where p 6= q as it directly implies k = 0, |Ω| = 1

λ , ν = λ,
trivializing the problem. Consider the following transformations,

|Ω|∑
i=1

DM (i) = ρk + ν + λ(|Ω| − k − 1)

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λk − ρk − λ|Ω|+ λ+ λ(|Ω| −

⌊
1− |Ω|λ
ρ− λ

⌋
− 1)

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λk − ρk − λ|Ω|+ λ+ λ|Ω| − λ

⌊
1− |Ω|λ
ρ− λ

⌋
− λ

= ρ

⌊
1− |Ω|λ
ρ− λ

⌋
+ 1 + λk − ρk − λ

⌊
1− |Ω|λ
ρ− λ

⌋
= 1 + (ρ− λ)

⌊
1− |Ω|λ
ρ− λ

⌋
+ (λ− ρ)k

= 1 + (ρ− λ)

⌊
1− |Ω|λ
ρ− λ

⌋
+ (λ− ρ)

⌊
1− |Ω|λ
ρ− λ

⌋
= 1

We must also show that 0 ≤ k ≤ |Ω|. For these operations, assume λ 6= ρ as in this case k trivially satisfies the
bounds. Recall that by assumption, Condition 1 binds |Ω| as follows, 1

ρ ≤ |Ω| ≤
1
λ .

9

k =

⌊
1− |Ω|λ
ρ− λ

⌋
≤ 1− |Ω|λ

ρ− λ

≤
1− λ

ρ

ρ− λ

=
ρ− λ
ρ(ρ− λ)

=
1

ρ

≤ |Ω|

k =

⌊
1− |Ω|λ
ρ− λ

⌋
≥

⌊
1− λ

λ

ρ− λ

⌋
= 0

Combining all this, we can see that we assign a marginal probability between λ and ρ to each label, which adds up
to one. We can also see that k, ν, and (n− k − 1) must be positive, except in the case where n = k in which case
ν and n− k − 1 cancel each other out and every label is assigned ρ marginal probability. We have also shown that
these probabilities add up to 1, indicating we have satisfied Randomness Over Labels.

Randomness Over Words: (∀ 1 ≤ i ≤ |Ω|, ∀y ∈ Ii, αi ≤ Pr[y = w | w ∈ Ii, w ← D] ≤ βi)

There are two possibilities for the distribution over any Di, either (A), εiopt = 1− βi|Ai|, or (B), εiopt = αi|Ii\Ai|.
We will show that in either case all elements of Ii satisfy the lower and upper randomness constraints.

(A) εiopt = 1− βi|Ai|

Showing that all elements in Ai satisfy the constraint is simple, as by definition we distribute 1− εiopt = βi|Ai|

uniformly over all elements of Ai. Thus ∀w ∈ Ai, Di(w) =
1−εiopt
|Ai| = βi|Ai|

|Ai| = βi. This satisfies both the upper

and lower bound requirements for the constraint over all elements of Ai.

Since εiopt = 1 − βi|Ai|, we can also conclude that 1 − βi|Ai| ≥ αi|Ii\Ai| by the max function. As we are

distributing εiopt uniformly over all elements ∀w ∈ Ii\Ai, Di(w) =
εiopt
|Ii\Ai| = 1−βi|Ai|

|Ii\Ai| ≥
αi|Ii\Ai|
|Ii\Ai| = αi. In

addition, by Condition 2, 1
βi
≤ Ii. In addition, as Ai ⊆ Ii, we can conclude that |Ii\Ai| = |Ii|−|Ai|. Therefore,

∀w ∈ Ii\Ai, Di(w) =
εiopt
|Ii\Ai| = 1−βi|Ai|

|Ii|−|Ai| ≤
1−βi|Ai|
1
βi
−|Ai|

= βi
1−βi|Ai|
1−βi|Ai| = βi. Thus we have shown that both the

upper and lower bound requirements are satisfied for all elements of Ai\Ii.

(B) εiopt = αi|Ii\Ai|

Showing that all elements in Ii\Ai is simple, as we are distributing αi|Ii\Ai| uniformly over all elements of

Ii\Ai. Thus, ∀w ∈ Ii\Ai, Di(w) = αi|Ii\Ai|
|Ii\Ai| = αi. This satisfies both the upper and lower bound requirements

for the constraint over all elements of Ii\Ai.
Since εiopt = αi|Ii\Ai|, it follows by the definition of the max function that αi|Ii\Ai| > 1 − βi|Ai|. Again,

note that as Ai ⊆ Ii, we can conclude that |Ii\Ai| = |Ii| − |Ai| and that by condition 2, |Ii| ≤ 1
αi

. As

we are distributing 1 − εiopt uniformly over all elements of Ai, ∀w ∈ Ai, Di(w) =
1−εiopt
|Ai| = 1−αi|Ii|+αi|Ai|

|Ai| =

1−αi|Ii|
|Ai| +αi ≥

1−αi 1
αi

|Ai| +αi = αi. Similarly, ∀w ∈ Ai, Di(w) =
1−εiopt
|Ai| = 1−αi|Ii\Ai|

|Ai| ≤ 1−(1−βi|Ai|)
|Ai| = βi|Ai|

|Ai| = βi.

Thus we have shown that all elements in Ai satisfy the upper and lower bound requirements.

Finally, it is implicit by the definition that
∑
w∈Ii Di(w) = 1, as in either case all remaining probability is assigned.

(⇐) If the labelled control improvisation instance is solvable, the above conditions hold.

Assume that an instance C of the labelled control improvisation is solvable. This implies there exists a distribution,
which we will call D′, that satisfies the 4 constraints listed in the definition. Let D′M be the marginal probability function

10

and D′i(w) be the conditional probability function as defined above. We will now show that C must also satisfy the 3
conditions enumerated above.

1.
1

ρ
≤ |Ω| ≤ 1

λ

Note that a probability distribution must sum to 1, and that a label class must have between λ and ρ marginal
probability of being selected in an improvising distribution, so,

1 =

|Ω|∑
i=1

D′M (i) ≤ ρ|Ω|

∴
1

ρ
≤ |Ω|

1 =

|Ω|∑
i=1

D′M (i) ≥ λ|Ω|

∴ |Ω| ≤ 1

λ

As we can see, 1
ρ ≤ |Ω| ≤

1
λ .

2. ∀ 1 ≤ i ≤ |Ω|, 1

βi
≤ |Ii| ≤

1

αi

Again, note that a probability distribution must sum to 1, and that a word must have between αi and βi conditional
probability of being selected, so,

1 =
∑
w∈Ii

D′i(w) ≤ βi|Ii|

∴
1

βi
≤ |Ii|

1 =
∑
w∈Ii

D′i(w) ≥ αi|Ii|

∴ |Ii| ≤
1

αi

As we can see, 1
βi
≤ |Ii| ≤ 1

αi
.

3. 1− ε ≤
k∑
i=1

(λδ(Hi)) + νδ(Hk+1) +

|Ω|∑
i=k+2

(ρδ(Hi))

We will prove this statement by arguing that the improvising distribution constructed above in the proof that our
conditions are sufficient is optimal in terms of maximizing the probability of selecting an element from A. Once we
have shown this, we can conclude that if there exists an improvising distribution, it must select elements in A with
equal or less probability than our improvising distribution. Thus our constructed distribution must also be a valid
distribution for C implying that the above inequality holds.

We will first show that the constructed distribution is optimal via a transformation argument. Let δ′(i) be the
marginal probability of selecting a string in Ai from D′, conditional on that string being a member of Ii.

As D′ is an improvising distribution, we know that Pr[w ∈ A | w ← D′] ≥ 1 − ε. Using our above definitions, we

know that Pr[w ∈ A | w ← D′] is exactly
∑|Ω|
i=1D

′
M (i)δ′(i). We formalize this below,

1− ε ≤
|Ω|∑
i=1

∑
w∈Ai

D′M (i)D′i(w)

=

|Ω|∑
i=1

D′M (i)δ′(i)

11

Now we will show that for each δ′(i), we can apply the clamping method for assigning distribution used in our
construction above, and get an equal or greater probability of selecting an element. To this end, we must show
that ∀ 1 ≤ i ≤ |Ω|, δ′(i) ≤ 1 − max(1 − βi|Ai|, αi|Ii\Ai|). Assume for the sake of contradiction that for some i,
δ′(i) > 1−max(1− βi|Ai|, αi|Ii\Ai|). Consider the following cases,

Case 1: 1− βi|Ai| ≥ αi|Ii\Ai|

δ′(i) > 1− (1− βi|Ai|)
= βi|Ai|

This however is a contradiction, as by definition we can distribute no more than β|Ai| probability over all Ai.

Case 2: αi|Ii\Ai| ≥ 1− βi|Ai|

δ′(i) > 1− αi|Ii\Ai|
≥ 1− (1− βi|Ai|)
= βi|Ai|

Again, this is a contradiction by the same reason as above.

Thus we can change each δ′(i) to the probability obtained with the clamping method, and have equal or larger
probability of selecting an element in Ai. Note that we have already shown that the clamping method always satisfies
the conditions if there are an appropriate number of labels, which we have shown while proving the necessity of
the other conditions. Using this information, for every i define δ(i) to the probability of selecting an element of Ai,
conditional on that element being in Ii, that we obtain from the clamping method. From this, we can also define a
list H. Let H be a list of the indices, i, for each label, sorted in non increasing order by the value of δ(i). Overall,

it is clear that
∑|Ω|
i=1D

′
M (i)δ′(i) ≤

∑|Ω|
i=1D

′
M (i)δ(i).

Now we will show that the method that we use to assign the marginal probability to each label class in our
constructive method is optimal in terms of maximizing the marginal probability of selecting an element in A. In
particular we will show this over D′, but with the newly obtained δ(i). Consider the following manipulation, and
repeat it as many times as possible: for the earliest element of H, Hi that is not already equal to ρ, set D′M (Hi) to

ρ and subtract probability from any and as many D′M (Hj), i < j as necessary to ensure that
∑|Ω|
i=0D

′
M (i) = 1 and

∀ 1 ≤ i ≤ |Ω|, D′M (i) ≥ λ. As our list H is in non increasing order by the value of δ(i), for any 1 ≤ i < j, δ(i) ≥ δ(j).
Thus for any ω subtracted from D′M (j) and added to D′M (i),

D′M (Hi)δ(Hi) +D′M (Hj)δ(Hj) = D′M (Hi)δ(Hi) + (D′M (Hj) + ω − ω)δ(Hj)

= D′M (Hi)δ(Hi) + ωδ(Hj) + (D′M (Hj)− ω)δ(Hj)

≤ (D′M (Hi) + ω)δ(Hi) + (D′M (Hj)− ω)δ(Hj)

As we can see, each time we do this the total sum is equal to or greater to what it was before. Once this precess
terminates, let DM be the resulting marginal probability distribution. Note that we do not violate any of the

Randomness over Labels constraints,
∑|Ω|
i=1DM (i) remains the same, we never assign DM (i) for any i to a value

higher than ρ, and we ensure via our conditions that we do not reduce an DM (i) for any i below λ.

We must now show that k =
⌊

1−|Ω|λ
ρ−λ

⌋
labels will end up with marginal probability ρ after we complete this process.

This can be shown simply by reverting to its derivation, 1−kρ ≥ (|Ω|−k)λ, where k is the smallest natural number
satisfying the inequality. We then compute k as defined above for this problem, which fits this inequality, ensuring
that when we have assigned k label distributions probability ρ, we still have enough remaining to assign all the
remaining label distributions probability at least λ. We then perform a similar iteration of the process above one
final time to assign any remaining probability to the next DM (i), resulting in it having probability ν and all label
distributions after it having probability λ. By the same logic as above, this must also result in a greater or equal

sum. Thus, we have shown that
∑|Ω|
i=1D

′
M (i)δ(i) ≤

∑|Ω|
i=1DM (i)δ(i) =

∑k
i=1 (λδ(Hi)) + νδ(Hk+1) +

∑|Ω|
k+2 (ρδ(Hi)).

12

Combining all of the results above, we can see that,

1− ε ≤
|Ω|∑
i=1

∑
w∈Ai

D′M (i)D′i(w) =

|Ω|∑
i=1

D′M (i)δ′(i) ≤
|Ω|∑
i=1

D′M (i)δ(i) ≤
k∑
i=1

(λδ(Hi)) + νδ(Hk+1) +

|Ω|∑
k+2

(ρδ(Hi))

And thus we satisfy Condition 3.

�

Of importance in the previous theorem is that it is constructive, meaning that we have also outlined a clearly polynomial
time algorithm to compute an improvising. We formalize this in the theorem below.

Theorem 2.2.2. (LCI Construction) Given |Ii\Ai| and |Ai| for all i ∈ {1, . . . , |Ω|} for an LCI instance C, there is an
algorithm to compute an LCI improvising distribution in polynomial time of the size of the LCI instance.

Proof. This theorem follows immediately from Theorem 2.2.1. The procedure outlined in the proof that the conditions
are sufficient provides an algorithm for constructing an improvising distribution. This algorithm can clearly be done in
polynomial time, and the only inputs required are |Ii\Ai| and |Ai| for all i ∈ {1, . . . , |Ω|}. �

13

Chapter 3

Maximum Entropy Labelled Control
Improvisation

As we have seen in the Labelled Control Improvisation problem, the sheer number of parameters can be somewhat
unwieldy to work with. To resolve this, we seek to simplify the parameters to the Labelled Control Improvisation problem
by removing the α̂ and β̂ parameters. Without these parameters however, we begin to encounter trivial and overly
simplistic solutions, as we no longer enforce randomness inside each label class. Consider an example with 3 label classes,
each containing 1,000 words. Assume each label class has exactly one word in A. One possible distribution could simply
return only the three words in A, with whatever marginal probability over the labels dictated by λ and ρ. However, the ε
for our soft constraint might allow us to return quite a few words from I without violating the soft constraint. Obviously
if we seek greater randomness, this second solution is preferable. To solve this problem, we introduce the Maximum
Entropy Labelled Control Improvisation problem.

3.1 Definition

We now define a MELCI instance, and from that a MELCI improvising distribution and the MELCI Problem.

Definition 3.1.1. (MELCI Instance) Let C = (H,S, L,m, n, ε, λ, ρ, τ) be a Maximum Entropy Labelled Control Impro-
visation, or MELCI, instance. Assume all the parameters are defined as in Section 2.1, and note that a MELCI instance
has the same form as an LCI instance without the α̂ and β̂ parameters, and with the addition of τ , a positive rational
number.

Definition 3.1.2. (MELCI Improvising Distribution) Let H be the distribution entropy function. Given a MELCI
Instance C = (H,S, L,m, n, ε, λ, ρ, τ), a distribution on words D : Σ∗ → [0, 1] is an improvising distribution if it satisfies
the following constraints,

1. Hard Constraint: Pr[w ∈ I | w ← D] = 1

2. Soft Constraint: Pr[w ∈ A | w ← D] ≥ 1− ε

3. Randomness over Labels: ∀ 1 ≤ i ≤ |Ω|, λ ≤ Pr [w ∈ Ii | w ← D] ≤ ρ

Definition 3.1.3. (MELCI Problem) We say that a MELCI instance is feasible if there exists an improvising distribution
for it. We define an improviser for an MELCI instance as a probabilistic algorithm which takes no input and finite expected
runtime, whose output distribution is an improvising distribution such that the entropy of the output distribution is at
most τ less than the maximum entropy improvising distribution (an additive error bound). Given a MELCI instance C,
we define the MELCI problem as determining if C is feasible, and if is, generating an improviser for C and the entropy of
the improviser’s output distribution.

We can now address how to solve the MELCI problem.

14

3.2 Construction of Maximum Entropy Distribution

3.2.1 Initial Problem

Recall that DM (i) is defined as the marginal probability of picking a word in Ii, and Di(w) is defined as the conditional
probability of selecting a word w ∈ Ii given that we know we will select a word from Ii. In this construction, we seek to
maximize the entropy equation, which we write in expanded form below,

|Ω|∑
i=1

∑
w∈Ii

−DM (i)Di(w) · log(DM (i)Di(w))

In doing so we must respect the following constraints,

|Ω|∑
i=1

∑
w∈Ai

DM (i)Di(w) ≥ 1− ε

∀ i ∈ {1, . . . , |Ω|}, λ ≤ DM (i) ≤ ρ
|Ω|∑
i=1

DM (i) = 1

∀ i ∈ {1, . . . , |Ω|},
∑
w∈Ii

Di(w) = 1

∀ i ∈ {1, . . . , |Ω|}, DM (i) ≥ 0

∀ i ∈ {1, . . . , |Ω|}, ∀w ∈ Ii, Di(w) ≥ 0

As we can see, this is none other than a continuous constrained optimization problem over the variables DM (i) and
Di(w) for all i ∈ {1, . . . , |Ω|} and all w ∈ I.

3.2.2 Bi-Uniform Label Class Distribution

We can simplify this problem by simplifying all the assignments of Di for every word in Ii into two assignments, the
probability distributed over Ai and the probability distributed over Ii\Ai. We will prove this below after proving a lemma
to help us.

Lemma 3.2.1. A uniform distribution over a finite set of words is a distribution that achieves maximum entropy.

Proof. Let Dopt be the uniform distribution over a set of words S. Using the definition of entropy,

H(Dopt) = −
∑
w∈I

Dopt(w) log(Dopt(w))

=
∑
w∈I
−
(

1

|I|

)
log

(
1

|I|

)
=
∑
w∈I
−
(

1

|I|

)
(log(1)− log(|I|))

=
∑
w∈I

(
1

|I|

)
log(|I|)

= log(|I|)

Now, recall Jensen’s inequality, which states, for a real concave function f , numbers x1, . . . , xn in f ’s domain, and
positive weights ai, . . . , an.

15

f

(∑
aixi∑
ai

)
≥
∑
aif(xi)∑
ai

In addition, recall that entropy is a concave function [8, Theorem 2.7.3]. Noting this, let f(x) = −x log(x). Let D be
any distribution over S. Again using the definition of entropy,

H(D) =
∑
w∈I

D(w) log(D(w))

=
∑
w∈I

f(D(w))

= |I|
(∑

w∈I f(D(w))

|I|

)
= |I|

(∑
w∈I f(D(w))∑

w∈I 1

)
≤ |I|f

(∑
w∈I D(w)∑
w∈I 1

)
(Jensen’s Inequality)

= |I|f
(

1

|I|

)
= −(|I|)

(
1

|I|

)
log

(
1

|I|

)
= − log

(
1

|I|

)
= −(log(1)− log(|I|))
= log(|I|)

As we can see H(D) ≤ H(Dopt), thus showing that Dopt, the uniform distribution, is a maximum entropy distribution
over I. �

Theorem 3.2.2. Let Ii be a label class for which we require a distribution that has PAi probability of choosing a word in
Ai and PIi\Ai probability of choosing a word in Ii\Ai. DOpt is such a distribution that achieves maximum entropy,

DOpt(w) =


PAi
|Ai| w ∈ Ai

PIi\Ai
|Ii\Ai| w ∈ Ii\Ai

Proof. Let D be any distribution over a label class Ii that has PAi probability of choosing a word in Ai and PIi\Ai
probability of choosing a word in Ii\Ai. Using the definition of entropy,

H(D) =
∑
w∈Ii

−D(w) log(D(w))

=
∑
w∈Ai

−D(w) log(D(w)) +
∑

w∈Ai\Ii

−D(w) log(D(w))

Consider two distributions DAi and DIi\Ai as defined below,

16

DAi(w) =

{
1
PAi

D(w) w ∈ Ai
0 w 6∈ Ai

DIi\Ai(w) =

{
1

PIi\Ai
D(w) w ∈ Ii\Ai

0 w 6∈ Ii\Ai

Recall that PAi = Pr[w ∈ Ai | w ← D] and PIi\Ai = Pr[w ∈ Ii\Ai | w ← D]. From the above we can see that
DAi(w) = Pr[w = y | y ∈ Ai, y ← D] and DIi\Ai(w) = Pr[w = y | y ∈ Ii\Ai, y ← D].

Using these definitions and observations, along with Lemma 3.2.1, we can continue our calculations from above,

=
∑
w∈Ai

−D(w) log(PAiDAi(w)) +
∑

w∈Ai\Ii

−D(w) log(PIi\AiDIi\Ai(w))

=
∑
w∈Ai

−D(w) log(PAi) +
∑
w∈Ai

−D(w) log(DAi(w)) +
∑

w∈Ai\Ii

−D(w) log(PIi\Ai) +
∑

w∈Ai\Ii

−D(w) log(DIi\Ai(w))

=
∑
w∈Ai

−PAiDAi(w) log(PAi) +
∑
w∈Ai

−PAiDAi(w) log(DAi(w))

+
∑

w∈Ai\Ii

−PIi\AiDIi\Ai(w) log(PIi\Ai) +
∑

w∈Ai\Ii

−PIi\AiDIi\Ai(w) log(DIi\Ai(w))

= −PAi log(PAi) + PAi
∑
w∈Ai

−DAi(w) log(DAi(w))− PIi\Ai log(PIi\Ai) + PIi\Ai
∑

w∈Ai\Ii

−DIi\Ai(w) log(DIi\Ai(w))

= −PAi log(PAi) + PAiH(DAi)− PIi\Ai log(PIi\Ai) + PIi\AiH(DIi\Ai))

≤ PAi log(|Ai|) + PIi\Ai log(|Ii\Ai|)− PAi log(PAi)− PIi\Ai log(PIi\Ai) (Lemma 3.2.1)

Now we calculate the entropy of DOpt.

H(DOpt) =
∑
w∈Ii

−DOpt(w) log(DOpt(w))

=
∑
w∈Ai

−DOpt(w) log(DOpt(w)) +
∑

w∈Ii\Ai

−DOpt(w) log(DOpt(w))

=
∑
w∈Ai

−PAi
|Ai|

log

(
PAi
|Ai|

)
+

∑
w∈Ii\Ai

−
PIi\Ai
|Ii\Ai|

log

(
PIi\Ai
|Ii\Ai|

)

= −PAi log

(
PAi
|Ai|

)
− PIi\Ai log

(
PIi\Ai
|Ii\Ai|

)
= PAi log (|Ai|) + PIi\Ai log (|Ii\Ai|)− PAi log (PAi)− PIi\Ai log

(
PIi\Ai

)

As we can see, the entropy of DOpt is always greater than or equal to any other distribution that meets the requirements.
Therefore, DOpt is a maximum entropy distribution over a label class Ii that has PAi probability of choosing a word in
Ai and PIi\Ai probability of choosing a word in Ii\Ai. �

Using these results, we can simplify our optimization problem, as we already know the optimal distribution in each
label class. All that remains to be chosen is PAi , the amount of probability each conditional distribution in a label class
has of selecting a word in A (which also fixes PIi\Ai). Incorporating the results from Theorem 3.2.2, we can perform the
following transformations to our maximization problem,

17

|Ω|∑
i=1

∑
w∈Ii

−DM (i)Di(w) · log(DM (i)Di(w))

=

|Ω|∑
i=1

∑
w∈Ai

−DM (i)Di(w) · log(DM (i)Di(w)) +
∑

w∈Ii\Ai

−DM (i)Di(w) · log(DM (i)Di(w))


≤
|Ω|∑
i=1

∑
w∈Ai

−DM (i)
PAi
|Ai|
· log

(
DM (i)

PAi
|Ai|

)
+

∑
w∈Ii\Ai

−DM (i)
PIi\Ai
|Ii\Ai|

· log

(
DM (i)

PIi\Ai
|Ii\Ai|

) (Theorem 3.2.2)

=

|Ω|∑
i=1

(
−DM (i)PAi · log

(
DM (i)

PAi
|Ai|

)
−DM (i)PIi\Ai · log

(
DM (i)

PIi\Ai
|Ii\Ai|

))

=

|Ω|∑
i=1

(
−DM (i)PAi · log (DM (i))−DM (i)PAi · log

(
PAi
|Ai|

)
−DM (i)PIi\Ai · log (DM (i))−DM (i)PIi\Ai · log

(
PIi\Ai
|Ii\Ai|

))

=

|Ω|∑
i=1

−DM (i)PAi (log (DM (i)) + log (PAi)− log (|Ai|))−DM (i)PIi\Ai
(
log (DM (i)) + log

(
PIi\Ai

)
− log (|Ii\Ai|)

)
=

|Ω|∑
i=1

−DM (i)PAi (log (DM (i)PAi)− log (|Ai|))−DM (i)PIi\Ai
(
log
(
DM (i)PIi\Ai

)
− log (|Ii\Ai|)

)
= −

|Ω|∑
i=1

(
DM (i)PAi log (DM (i)PAi)−DM (i)PAi log (|Ai|) +DM (i)PIi\Ai log

(
DM (i)PIi\Ai

)
−DM (i)PIi\Ai log (|Ii\Ai|)

)

Thus our new optimization problem is,

Max −
|Ω|∑
i=1

DM (i)PAi log (DM (i)PAi)−DM (i)PAi log (|Ai|) +DM (i)PIi\Ai log
(
DM (i)PIi\Ai

)
−DM (i)PIi\Ai log (|Ii\Ai|)

Subject to,

|Ω|∑
i=1

DM (i)PAi ≥ 1− ε

∀ i ∈ {1, . . . , |Ω|}, λ ≤ DM (i) ≤ ρ
|Ω|∑
i=1

DM (i) = 1

∀ i ∈ {1, . . . , |Ω|}, DM (i) ≥ 0

∀ i ∈ {1, . . . , |Ω|}, PAi + PIi\Ai = 1

∀ i ∈ {1, . . . , |Ω|}, if |Ai| 6= 0, PAi ≥ 0

∀ i ∈ {1, . . . , |Ω|}, if |Ii\Ai| 6= 0, PIi\Ai ≥ 0

∀ i ∈ {1, . . . , |Ω|}, if |Ai| = 0, PAi = 0

∀ i ∈ {1, . . . , |Ω|}, if |Ii\Ai| = 0, PIi\Ai = 0

Note that we must add two additional constraints to ensure that if a label class has no words in Ai or Ii\Ai, then we
do not assign any probability to PAi or PIi\Ai respectively.

18

3.2.3 Optimization of Distribution

We will now present all of these formulas in canonical form while simplifying the problem further. Without these changes,
the soft constraint in this problem is not convex. To transform the problem into a convex one, we define D(Ai) = DM (i)PAi
and D(Ii\Ai) = DM (i)PIi\Ai , and restate the problem in terms of these new variables. We can also restrict the domain
of all variables D(Ai) and D(Ii\Ai) to [0, 1]. Note that for any i, DM (i) = D(Ai) +D(Ii\Ai). In addition, for simplicity
we assume that log(x) is the natural logarithm.

In its final state, the optimization problem takes the form below, optimizing over D(Ai) and D(Ii\Ai) for every i, of
which there are |Ω|, for a total of 2|Ω| variables and up to 5|Ω|+ 2 constraints.

Min f =

|Ω|∑
i=1

(D(Ai) log (D(Ai)) +D(Ii\Ai) log (D(Ii\Ai))−D(Ai) log (|Ai|)−D(Ii\Ai) log (|Ii\Ai|))

subject to

−
|Ω|∑
i=1

D(Ai) + (1− ε) ≤ 0 (C1)

∀ i ∈ {1, . . . , |Ω|}, −D(Ai)−D(Ii\Ai) + λ ≤ 0 (C2)

∀ i ∈ {1, . . . , |Ω|}, D(Ai) +D(Ii\Ai)− ρ ≤ 0 (C3)

∀ i ∈ {1, . . . , |Ω|},−D(Ai) ≤ 0 (C4)

∀ i ∈ {1, . . . , |Ω|},−D(Ii\Ai) ≤ 0 (C5)

|Ω|∑
i=1

(D(Ai) +D(Ii\Ai))− 1 = 0 (C6)

∀ i ∈ {1, . . . , |Ω|}, if |Ai| = 0, D(Ai) = 0 (C7)

∀ i ∈ {1, . . . , |Ω|}, if |Ii\Ai| = 0, D(Ii\Ai) = 0 (C8)

In general we would like an algorithm to compute this problem numerically with clear bounds on runtime and a
guarantee of convergence. We will provide such a method in Section 3.3.

3.3 Algorithm for Computing Maximum Entropy Distribution

It will first prove useful to us to show that our problem takes the form of a convex optimization problem. It is immediately
clear that all of our inequality and equality constraints (C1-C8) are affine. This in turn implies that they are convex. We
will now show that f is also a convex function.

Theorem 3.3.1. f is convex.

Proof. The sum of convex functions is convex, so we must simply prove that each function in the summation is convex.
For any i ∈ {1, . . . , |Ω|}, the corresponding function in the summation is of the form,

g(D(Ai), D(Ii\Ai)) = D(Ai) log (D(Ai)) +D(Ii\Ai) log (D(Ii\Ai))−D(Ai) log (|Ai|)−D(Ii\Ai) log (|Ii\Ai|)

Repeating this step again, we see that g is again composed of a summation of convex functions. It is easy to see that
(x log(x))

′′
= 1

x . As 1
x is positive for any x ∈ [0, 1], our domain, x log(x) is a convex function over our domain. The two

other components are affine, and therefore trivially convex. Thus g is a convex function for any i, and as f is a sum of
convex functions, f is also convex. �

We can now present a formal procedure for calculating the Maximum Entropy Labelled Control Improvisation.

Theorem 3.3.2. Given |Ii\Ai| and |Ai| for all i ∈ {1, . . . , |Ω|} for a MELCI instance C, there is an algorithm to compute
a MELCI improvising distribution within τ of the maximum entropy distribution or show that no feasible point exists in
time polynomial in the size of |Ω| and log(1

τ).

19

Proof. Looking at the procedure described in Theorem 2.2.2 where we lay out our MELCI optimization problem, we can
see that the only inputs required are |Ii\Ai| and |Ai| for all i ∈ {1, . . . , |Ω|}. As we know these quantities by assumption,
we have all the inputs required for the specified procedures.

We must first determine whether or not our MELCI instance is feasible. To do this, we must first observe that a
MELCI improvising distribution has all the constraints of an LCI distribution with the exception of the Randomness
over Words constraint. Thus from our MELCI instance C = (H,S, L,m, n, ε, λ, ρ, τ), we can create a LCI instance

C′ = (H,S, L,m, n, ε, λ, ρ, α̂, β̂) where α̂ = (0, . . . , 0) and β̂ = (1, . . . , 1). As any distribution satisfies the Randomness

over Words constraint for this choice of α̂ and β̂, it follows that C is feasible if and only if C′ is feasible. Thus we can use
the Theorem 2.2.2 to arrive at a feasible distribution for both C and C′ or determine that both problems are infeasible in
polynomial time. Going forward we will assume the problem is feasible.

We will now present an algorithm to compute a MELCI improvising distribution within τ of the maximum entropy
distribution using the procedure laid out by Chubanov [9]. To use this method, we must first show that our optimization
problem takes the form of an objective function that is a separable convex function and entirely linear constraints. We
have already shown convexity in Theorem 3.3.1, and using the same argument in that theorem we can see that f is
clearly separable into convex functions of one variable. We can also clearly see that all our constraints are linear. We
must also show that we can compute our objective function in polynomial time, but this is again trivial. As our problem
meets the required specification and we have an an initial feasible point as computed via the LCI construction above,
we can use Chubanov’s method to solve our problem. The resulting time complexity is polynomial in the size of |Ω|,
as both the number of variables and the number of constraints is bounded by this number, and log(1

τ). The resulting
approximate distribution is guaranteed to be feasible and have entropy at most τ less the maximum entropy improvising
distribution. �

20

Chapter 4

Time Complexity for LCI and MELCI
Problems

In this section, we will explore the time complexities of the LCI and MELCI problems for different choices of constraint
and labelling specifications. We will provide upper bounds on the complexity of a broad group of feasible problems, and
provide more specific bounds for several groups of general specification choices.

4.1 Definitions

We begin this section by defining a specification, which is any formalism that defines a language of words over an alphabet.
Some examples might be DFAs, NFAs, CFGs, etc... In both LCI and MELCI, we take in a variety of parameters, but the
three with which we will concern ourselves in this section are H, S, L as they will determine the time complexity of our
problem. We use the notation, LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3), where SPEC1,
SPEC2, and SPEC3 are classes of specifications. In our notation, LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1,
SPEC2, SPEC3) imply a problem instance where H is encoded as an element of SPEC1, S is encoded as an element of
SPEC2, and L can be decomposed into indicator functions of the class SPEC3 for each label.

4.2 Construction of Labelling Function

In our notation above, we have left the format of the labelling function L rather abstract. We do this because we lack
a sufficiently general framework for labelling functions. Instead we assume in general that they can be decomposed
in polynomial time into polynomially many labels in the size of L, and treat them by the decision specifications they
decompose into. In this section however, we highlight a some possible choices of labelling functions that preserve these
properties and decompose into usable specifications.

• DFA: A labelling function that decomposes into DFAs might simply be a DFA along with a mapping that links each
accepting state to a label. First note that there are clearly only polynomially many labels in the size of L, as there
can be at most one label per accepting state. In addition, we can decompose L into all label indicator functions
in polynomial time by copying over the DFA for each label, keeping only the accepting states corresponding to the
current label and setting all other accepting states to non accepting states.

• UCFG: In this case, the simplest example is one in which we bundle multiple UCFGs into one function, each
labelling the words they accept. However, in this case it is essential that no word is accepted by more than one of
the UCFGs, as otherwise it is an improperly defined labelling function.

In general, we assume there are reasonable labelling functions that support decomposition in the ways we describe
below.

21

4.3 Essential Operations

We can now generalize the process of solving the LCI and MELCI problems. First we must compute |Ii| and |Ii\Ai| based
off of the three specifications. Using these computed values, we can calculate our distribution over the Ii and Ii\Ai sets
using the LCI construction, in Theorem 2.2.2, or the MELCI algorithm, in Section 3.3. Finally, we use this distribution
to pick a Ii or Ii\Ai set, and then sample uniformly at random over that set.

We can now layout the operations that our specifications must support for us to be able to follow the framework laid
out above.

Definition 4.3.1. (Required Specification Operations)

1. Labelling Function Decomposition: Given a labelling function L : Σ∗ → Ω, compute the indicator function of
the class SPEC3 for each label in Ω. In other words, for each label `i ∈ Ω we must be able to compute a specification
Li : Σ∗ → {>,⊥}, belonging to the class SPEC3, such that Li accepts a word w ∈ Σ∗ if and only if L(w) = `i.

2. Counting: Given specifications H ∈ SPEC1,S ∈ SPEC2, Li ∈ SPEC3 and m,n ∈ N in unary, compute |L(H) ∩
L(S) ∩ L(Li) ∩ Σm:n| and |L(H) ∩ L(S) ∩ L(Li) ∩ Σm:n|.

3. Uniform Sampling: Given specifications H ∈ SPEC1,S ∈ SPEC2, Li ∈ SPEC3 and m,n ∈ N in unary, sample
uniformly at random from L(H) ∩ L(S) ∩ L(Li) ∩ Σm:n and L(H) ∩ L(S) ∩ L(Li) ∩ Σm:n.

If we can implement the above operations efficiently, we can solve the LCI and MELCI problems efficiently. In general,
as the space of possible labelling functions is rather abstract, we will assume Labelling Function Decomposition in most
of our Theorems. We will formalize this in Theorem 4.4.1

4.4 Polynomial Relative to an Oracle Time Improvisation Schemes

We can now show an important result relating the time complexity of an improvisation scheme to the complexity of
implementing the above operations.

Theorem 4.4.1. (Polynomial Oracle Time Complexity) Suppose we have an instance of LCI(SPEC1, SPEC2, SPEC3)
or MELCI(SPEC1, SPEC2, SPEC3), in which all specifications support the relevant operations described in Definition
4.3.1. Suppose further that the operations can be done in polynomial time relative to an oracle O (expected time for uniform
sampling) and that |Ω| is polynomial in the size of L. Then there is an improvisation scheme that is polynomial-time
relative to O for LCI(SPEC1, SPEC2, SPEC3) or MELCI(SPEC1, SPEC2, SPEC3).

Proof. We have already shown and proven correct polynomial time distribution constructions for LCI (Theorem 2.2.2)
and MELCI (Section 3.3). However, these constructions assume we have access to |Ii\Ai| and |Ai| for all i ∈ {1, . . . , |Ω|}.
Therefore, our first step is calculating these values.

Our first step is to compute the Li specifications from L. By assumption we know that there will only be polynomially
many label indicator functions with respect to the size of L. Again by assumption, we can now compute |L(H) ∩ L(S) ∩
L(Li)∩Σm:n| and |L(H)∩L(S)∩L(Li)∩Σm:n| for each i. Note that by definition, |Ii\Ai| = |L(H)∩L(S)∩L(Li)∩Σm:n|
and |Ai| = |L(H) ∩ L(S) ∩ L(Li) ∩Σm:n|. We assume the label function decomposition takes polynomial time relative to
O, and that the set counting operation takes polynomial time relative to O, for each label of which there are polynomially
many. By the closure of polynomials, this means that all these calculations take polynomial time relative to O.

Using these values, we can compute either the LCI or MELCI distribution using the appropriate construction, in
polynomial time of the input. As the input is bounded by the number of labels, which is polynomial, computing the
distribution must also take polynomial time.

Finally, we must select a Ii or Ii\Ai set for some i using our calculated distribution. We then sample uniformly over
our selected class, which takes polynomial time relative to O by assumption.

As each of the three stages of our improvisation scheme take polynomial time relative to O, our improvisation scheme
as a whole takes polynomial time relative to O. �

22

4.5 Upper Bound on Time Complexity for Improvisation Schemes

Using Theorem 4.4.1, we can now establish an upper bound on the time complexity of most problems we will encounter.
Specifically, we can bound the time complexity of our improvisation scheme in cases were membership in the language of
a SPEC, or label assignment if it is a labelling function, can be decided in polynomial time relative to a PH oracle and
the number of labels is bounded polynomially in the size of the input.

Theorem 4.5.1. (Upper Bound on Time Complexity for Improvisation Scheme) Suppose that membership in a language
X ∈ SPEC1∪SPEC2 can be decided in polynomial time relative to a PH oracle. In addition, suppose given Y ∈ SPEC3,
the label assigned to a word by Y can be computed in polynomial time relative to a PH oracle and that there are at most
polynomially many labels in the size of SPEC3. Then LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2,
SPEC3) have improvisation schemes that are both polynomial time relative to a #P-hard oracle.

Proof. By assumption there is a polynomial time algorithm relative to a PH oracle, MPH(w, X), that for X ∈ SPEC1 ∪
SPEC2 decides whether w ∈ L(X). We also assume there is a polynomial time algorithm relative to a PH oracle, NPH(w,
Y), that for Y ∈ SPEC3, returns the label assigned to w by Y. Because of this, we can define Ii, Ai, and Ii\Ai in terms
of our assumed algorithms,

Ii = {w ∈ Σ∗ | m ≤ |w| ≤ n ∧MPH(w,H) = 1 ∧NPH(w,L) = `i}
Ai = Ii ∩ {w ∈ Σ∗ |MPH(w,S) = 1}

Note that all words in Ii and Ai have length at most n, which means we can verify length in time polynomial of the size
of the input C, as the length bounds are input in unary. Combining this with the knowledge that MPH(w, X) and NPH(w,
X) both have polynomial runtime relative to a PH oracle, we can compute whether a word is in Ii or Ai in polynomial
time with respect to a PH oracle. We can then define three classes of relations, which are each defined for any i,

RIi = {(C,w) | w ∈ Ii}
RAi = {(C,w) | w ∈ Ai}

RIi\Ai = {(C,w) | w ∈ Ii\Ai}

We have already shown that the first two relations can be verified in polynomial time with a PH oracle, and it is clearly
seen that the third can be also be verified in polynomial time with a PH oracle by computing whether w is in Ii and not
Ai. Because of this, all of these relations are NPPH-relations, of which there are polynomially many. Thus it follows that
computing |Ii|, and |Ii\Ai| are #PPH problem. Using the relativized algorithms of Jerrum et al. [10] or Bellare et al [11],
we can also sample uniformly from these sets in polynomial expected time relative to a #PPH oracle. We can now use
a process similar to the one outlined in Theorem 4.4.1 to show that there is an improvisation scheme for LCI(SPEC1,
SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) that is polynomial time relative to a #PPH oracle (As we must
complete two operations that take polynomial time relative to #PPH, and one operation that takes polynomial time).

From this point we can use the results established in the second half of [3, (Theorem 3.3)], to further reduce this scheme
to simply using a #P oracle. Thus we have derived an improvisation scheme for LCI or MELCI that is polynomial-time
relative to a #P oracle. �

With these results, we have established an upper bound on the time complexity of most practical problems we will
encounter.

4.6 Time Complexity for Choice of Specification

In this section, we will look at various choices of specification, and the resulting time complexity.

Theorem 4.6.1. (Time Complexity with Exclusively DFA Specifications)
If L supports Labelling Function Decomposition in polynomial time and |Ω| is bounded polynomially by the size of L,
LCI(DFA,DFA,DFA) and MELCI(DFA,DFA,DFA) have polynomial time improvisation scheme.

Proof. By assumption, we can decompose in polynomial time L into |Ω| DFAs Li that accepts a word w ∈ Σ∗ if and only
if L(W) = `i. In addition, we assume that the number of labels is bounded polynomially by the size of the input.

23

As all our specifications are DFAs, we must now show that DFAs support the Counting and Uniform Sampling
operations. We will first show that we can find DFA specifications that have the language L(H) ∩ L(S) ∩ L(Li) and
L(H) ∩ L(S) ∩ L(Li) for each i. This follows simply from using the standard intersection and negation constructions, all
of which take polynomial time in the size of the input DFAs. As DFAs are closed under all these constructions, we must
merely show that DFAs support the Counting and Uniform Sampling operations.

1. Counting: Here, we can use the dynamic programming algorithm of Hickey and Cohen [12], using the counting
the algorithm does as a preliminary step to its uniform sampling. We can use this algorithm to count, for any c,
|L(H)∩L(S)∩L(Li)∩Σc| or |L(H)∩L(S)∩L(Li)∩Σc| in polynomial time. Repeating this and summing the results
for any c ∈ {m, . . . , n}, the number of which is bounded polynomially, we arrive at |L(H)∩L(S)∩L(Li)∩Σm:n| or
|L(H) ∩ L(S) ∩ L(Li) ∩ Σm:n|, in polynomial time.

2. Uniform Sampling: Here again we use the dynamic programming algorithm of Hickey and Cohen [12] to sample
uniformly over the words accepted by a DFA. As laid out in [3, (Theorem 3.4)], we calculate the number of words of
each possible length. We then pick a word length to sample uniformly over with weight proportional to that classes
share of the total number of words. Thus we can sample uniformly over all words accepted by L(H)∩L(S)∩L(Li)
or L(H) ∩ L(S) ∩ L(Li) of the correct length in polynomial time.

We have shown that we can compute all the operations laid out in Theorem 4.4.1 in polynomial time (we can add
a polynomial oracle for the sake of completeness, but PP = P so it is redundant). Thus we have a polynomial time
improvisation scheme for LCI(DFA,DFA,DFA) and MELCI(DFA,DFA,DFA). �

Theorem 4.6.2. (Time Complexity with one UCFG Specification and two DFAs Specifications)
Let exactly one of SPEC1, SPEC2, SPEC3 be the class of UCFGs, and the remaining two specifications be the class of

DFAs. If L supports Labelling Function Decomposition in polynomial time and |Ω| is bounded polynomially by the size of
L, LCI(DFA,DFA,DFA) and MELCI(DFA,DFA,DFA) have polynomial time improvisation scheme.

Proof. By assumption, we can decompose, in polynomial time, L into |Ω| DFAs or UCFGs Li that accept a word w ∈ Σ∗

if and only if L(W) = `i (Depending on whether SPEC3 is the class of DFAs or UCFGs). In addition, we assume that the
number of labels is bounded polynomially by the size of the input. We will now show that we can perform the Counting
and Uniform Sampling operations in polynomial time.

1. Counting: We must first determine |Ii| and |Ai|. We can compute UCFGs with the languages L(H) ∩ L(Li) and
L(H) ∩ L(S) ∩ L(Li) for each i. We can do this in polynomial time using the algorithm described in [3, Lemma
3.1]. Then using the counting technique from Hickey and Cohen [12] to compute Ii and Ai for each i. From there,
we can determine that |Ii\Ai| = |Ii| − |Ai|. Thus we can compute both |Ii\Ai| and |Ai| in polynomial time.

2. Uniform Sampling: To sample uniformly from each Ii is simple, as we can simply use the algorithms of Hickey
and Cohen [12] to do so in polynomial time. To sample uniformly from Ii\Ai is significantly more intricate, but
we can still do so in polynomial time using the procedure outlined in [3, Theorem 3.8]. We must simply take the
intersection of our two DFA specifications, which results in an output DFA. We then we can follow the technique
for sampling the intersection of a DFA and a UCFG outlined in [3, Theorem 3.8].

We have shown that we can compute all the operations laid out in Theorem 4.4.1 in polynomial time. Thus we have a
polynomial time improvisation scheme for cases where there is one UCFG specification and two DFA specifications. �

Theorem 4.6.3. (Time Complexity with two UCFG Specifications and one DFA Specification) Let exactly two of SPEC1,
SPEC2, SPEC3 be the class of UCFGs, and the remaining specification be the class of DFAs. LCI(SPEC1, SPEC2,
SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) are both #P-hard .

Proof. To prove this for the LCI case, we will reduce #UCFG-Int [3, Definition 3.7], which we know to be #P-hard [3,
Lemma 3.2], to solving for the feasibility of LCI(SPEC1, SPEC2, SPEC3).

Consider an instance of #UCFG-Int, (H,S, 1n), where we must compute |H ∩ S ∩ Σ≤n|. Let L decompose into
the trivial DFA that accepts all words. Consider the LCI instance CN = (H,S, L, 0, n, 0, 0, 1, 0, 1

N). Note that this LCI
instance samples over all words of length less than or equal to n, that are accepted by H, S. As there is only label
that accepts all words and it has trivial randomness constraints, CN is only feasible if there are more than N words in

24

L(H) ∩ L(S) ∩ Σ≤n. As described in [3, Theorem 3.9], we can now perform a binary search type operation to exactly
compute |L(H) ∩ L(S) ∩ Σ≤n| in polynomial time.

Now, we can make the observation that it does not matter which specifications are associated with the hard and
soft constraints or labelling function. This is because we sample over the intersection of the languages of our three
specifications, as there is only one label and our ε is set to 0. As long as one of them is the trivial DFA that accepts all
words and the other two are the UCFGs from our #UCFG-Int, we get the same result. As we have provided a clearly
polynomial time reduction, it follows that LCI(SPEC1, SPEC2, SPEC3) is #P-hard .

To prove this for the MELCI case, we will perform a similar reduction from #UCFG-Int to solving for a
MELCI(SPEC1, SPEC2, SPEC3) with at least a certain entropy. Again consider an instance of #UCFG-Int,
(H,S, 1n), where we must compute |L(H) ∩ L(S) ∩ Σ≤n|. Through Lemma 3.2.1, we know that the maximum entropy a
distribution of size s can have is log(s) (ignoring choice of log basis), achievable through the uniform distribution over all
elements of I. Thus if the entropy of a distribution over a set is greater than log(s), it follows that there must be more
than s elements in that set. Let L decompose into the trivial DFA that accepts all words. Consider the MELCI instance
C = (H,S, L, 0, n, 0, 0, 1, τ). As there is only one label with trivial randomness constraints, CN is feasible no matter
what. As ε = 0, our improviser must sample exclusively over strings accepted by H and S (and of course the trivial DFA
created by L). Recall that part of the MELCI problem is returning the entropy of the maximum entropy distribution
calculated. As there are no non-trivial randomness constraints and the soft constraint must be satisfied all the time by
our ε parameter choice, the maximum distribution is clearly a uniform distribution over |H ∩ S ∩ Σ≤n|.

Using the above and the problem definition, we know that the returned entropy will be in the range [log(|H ∩ S ∩
Σ≤n|)−τ, log(|H∩S∩Σ≤n|)] which means that it will clearly be greater than or equal to log(|H∩S∩Σ≤n|)−τ . As we seek

to transform this max entropy into the size of the set, we must now pick τ such that elog(|H∩S∩Σ≤n|)−τ ≥ elog(|H∩S∩Σ≤n−1|)

which allows us to determine exactly how large |L(H) ∩ L(S) ∩Σ≤n| is simply by rounding up log(|H ∩ S ∩Σ≤n|)− τ to
the next integer. We show how to do this below,

elog(|H∩S∩Σ≤n|)−τ > elog(|H∩S∩Σ≤n|−1)

elog(|H∩S∩Σ≤n|)e−τ > elog(|H∩S∩Σ≤n|−1)

|H ∩ S ∩ Σ≤n|e−τ > |H ∩ S ∩ Σ≤n| − 1

e−τ >
|H ∩ S ∩ Σ≤n| − 1

|H ∩ S ∩ Σ≤n|

−τ > log

(
|H ∩ S ∩ Σ≤n| − 1

|H ∩ S ∩ Σ≤n|

)

We now simplify τ to something easily computable.

25

τ < − log

(
|H ∩ S ∩ Σ≤n| − 1

|H ∩ S ∩ Σ≤n|

)
= log

(
|H ∩ S ∩ Σ≤n|
|H ∩ S ∩ Σ≤n| − 1

)
(Assume |H ∩ S ∩ Σ≤n| ≥ 2)

≤ log

(∑n
i=1 |Σ|n∑n

i=1 |Σ|n − 1

)

= log

 1−|Σ|n+1

1−|Σ|
1−|Σ|n+1

1−|Σ| − 1


= log

(
1− |Σ|n+1

1− |Σ|n+1 − 1 + |Σ|

)
= log

(
1− |Σ|n+1

1− |Σ|n+1 − 1 + |Σ|

)
= log

(
1− |Σ|n+1

|Σ| − |Σ|n+1

)
= log

(
|Σ|n+1 − 1

|Σ|n+1 − |Σ|

)

Note that we assume |H∩S∩Σ≤n| ≥ 2. If |H∩S∩Σ≤n| = 0, we will never use τ as there are no improvising distributions
for MELCI, so the we will return that the problem is not feasible. We account for the case where |H∩S ∩Σ≤n| = 1 there
exists only one feasible distribution which is over exactly one element, thus meaning it has a maximum entropy of 0. As

a distribution over two elements has a maximum entropy of log(2) we can simply set τ = 1
2 min(log(2), log

(
|Σ|n+1−1
|Σ|n+1−|Σ|

)
),

ensuring that that we will always generate a distribution with non-zero entropy if |H ∩ S ∩ Σ≤n| > 1. Thus with our
choice of τ , we can always compute the entropy of our constructed MELCI problem, raise e to its power, and round it to
the next highest number, resulting in the exact size of |H∩S ∩Σ≤n|. Note that even without the fact that our algorithm
relies only logarithmically on τ , we still remain in polynomial time for our computation as the number of bits needed to
represent τ is bounded polynomially in the size |Σ|.

Making the same observation as above regarding which specifications are associated with the hard and soft constraints
or labelling function, we can see that this process is easily generalized for any assignment of specifications where two
specifications are UCFGs and one is a DFA. As all of this can clearly be done in polynomial time, we have a polynomial
time reduction from #UCFG-Int to MELCI(SPEC1, SPEC2, SPEC3) and thus MELCI(SPEC1, SPEC2, SPEC3)
is #P-hard . �

Theorem 4.6.4. (Time Complexity with Exclusively UCFG Specifications) LCI(SPEC1, SPEC2, SPEC3) and
MELCI(SPEC1, SPEC2, SPEC3) are #P-hard .

Proof. We will show this by reducing LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) to
LCI(UCFG, UCFG, UCFG) and MELCI(UCFG, UCFG, UCFG) where exactly two of SPEC1, SPEC2, SPEC3

are the class of UCFGs, and the remaining specification is the class of DFAs. We will do this by noting that all DFAs
can be converted to unambiguous regular grammars, which are in fact unambiguous context free grammars. Thus we can
reduce any instance of LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) to LCI(UCFG, UCFG,
UCFG) and MELCI(UCFG, UCFG, UCFG) by encoding the DFA specification as a UCFG. As we have provided a
clearly polynomial time reduction, it follows that LCI(UCFG, UCFG, UCFG) and MELCI(UCFG, UCFG, UCFG)
are #P-hard . �

Theorem 4.6.5. (Time Complexity with DFA Specifications and one or more NFA Specifications) Let one or more of
SPEC1, SPEC2, SPEC3 be the class of NFAs, and the remaining specification be the class of DFAs. Then LCI(SPEC1,
SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) are #P-hard .

Proof. As shown by Kannan et al. [13], determining |L(M)∩Σl| for an NFAM over an alphabet Σ and l ∈ N in unary is
#P-hard . We will provide a polynomial time reduction from this problem to LCI(SPEC1, SPEC2, SPEC3). Define T

26

as the trivial DFA that accepts all words and define a labelling function L to be a function that is decomposed into a single
DFA mapping all words to a single label `. For some N ∈ N, consider an LCI instance CN = (M, T , L, l, l, 0, 0, 1, 0, 1

N).
This LCI instance generates only words in L(M) ∩ L(T) = L(M) and of length l as ε = 0 and n = m = l. As no
word can have more than 1

N probability of being generated, it follows that our LCI instance is satisfiable if and only if
|L(M)∩Σl| ≥ N . Using this, like in Theorem 4.6.3, we can perform a binary search to find the solution to |L(M)∩Σl| ≥ N
in polynomial time.

We will now provide a similar reduction from determining |L(M) ∩ Σl| for an NFA M over an alphabet Σ and l ∈ N
in unary to MELCI(SPEC1, SPEC2, SPEC3). Define a labelling function L to be a function that is decomposed into a
single DFA mapping all words to a single label `. Consider a MELCI instance C = (M, T , L, l, l, 0, 0, 1, τ). As in Theorem
4.6.3 the labelling constraints are trivial and apply to only one label, meaning we can ignore them. Also, as ε = 0, we only
consider strings also in T . Thus our distribution will sample exclusively over strings in L(M) ∩Σl. Using the arguments
made in Theorem 4.6.3, we can pick an appropriate τ , compute the entropy, bring e to its power, and round up to the
nearest integer to exactly compute |L(M) ∩ Σl|. The only difference would be that instead of having to create an upper
bound accounting for every string in Σ of length less than or equal to l, here we must only consider Σl in our bounds.
Again we can clearly do this in polynomial time as the number of bits needed to represent τ is again bounded polynomially
and our algorithm terminates in polynomial time.

Much like in Theorem 4.6.3, which specifications are associated with the hard/soft constraints or labelling function
does not matter, as long as one of them is an NFA and the rest are DFAs. As we have provided a polynomial time
reduction, it follows that LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) are #P-hard .

We can also note that since any DFA is also an NFA, the above instance can be reduced to any LCI or MELCI instance
with more NFA specifications replacing the current DFA specifications. This means that any LCI or MELCI instance with
one or more NFA specifications with all remaining specifications being DFAs is a #P-hard problem, which generalizes our
proof to the theorem stated above. �

Theorem 4.6.6. (Time Complexity with DFA Specifications and one or more CFG Specifications) Let one or more of
SPEC1, SPEC2, SPEC3 be the class of CFGs, and the remaining specification be the class of DFAs. Then LCI(SPEC1,
SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) are #P-hard .

Proof. We can show this by reducing an instance LCI(SPEC1’, SPEC2’, SPEC3’) and MELCI(SPEC1’, SPEC2’,
SPEC3’), where at least one of SPEC1’, SPEC2’ ,SPEC3’ is an NFA and the remaining specifications are DFAs, to
instances of LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3). This can be done trivially as any
regular language encoded by an NFA can be represented by an equivalent CFG. As we have provided a clearly polynomial
time reduction, it follows that LCI(SPEC1, SPEC2, SPEC3) and MELCI(SPEC1, SPEC2, SPEC3) must both be
#P-hard . �

Below, we present Tables 4.1, 4.2, and 4.3 summarizing the time complexity results above.

SPEC2 DFA UCFG CFG NFA
SPEC1

DFA P P
UCFG P #P
CFG #P
NFA #P

Table 4.1: SPEC3 = DFA

SPEC2 DFA UCFG CFG NFA
SPEC1

DFA P
UCFG #P
CFG #P
NFA #P

Table 4.2: SPEC3 = UCFG

27

SPEC2 DFA UCFG CFG NFA
SPEC1

DFA #P
UCFG #P
CFG #P
NFA #P

Table 4.3: SPEC3 = CFG/NFA

4.7 Complexity of Motivating Examples

We will now determine the complexity of the motivating examples we laid out in Section 1.2.

4.7.1 Robotic Planning

We begin by declaring our alphabet Σ as the possible movements in each direction or lack thereof, {North, East, South,
West, Stop}. We can encode our hard constraints as a DFA where each tile is a state, with transitions accounting for
terrain rules. We can then copy these into a tree like structure where once the robot has visited an objective, it must
visit one of the remaining objectives to move to a copy deeper down the tree. The start state will be the root base state,
and the accepting states are the base states in the leaves of this tree, which are only reachable when the robot has visited
all objectives and returned to base. Our soft constraint can be encoded by simply accepting any sequence of symbols of
length 30 or less. Finally, our labelling function can be encoded as a DFA in a similar tree structure as the hard constraint,
but this time only allowing movement down the tree by passing through an entrance/exit. We will ignore cases where a
robot uses an entrance/exit multiple times for simplicity, so we can simply have a two level tree with the base state in
each leaf being an accepting state annotated with the label of the entrance/exit the robot took to get there. This leaves
us with a total of 9 labels.

As one can clearly see from the above, our robotic planning example takes the form LCI(DFA, DFA, DFA) or
MELCI(DFA, DFA, DFA), implying we have a polynomial time improvisation scheme for it by Theorem 4.6.1.

4.7.2 Fuzz Testing

Here, we can define our hard constraint as our grammar that allows all valid inputs and perhaps some invalid inputs. We
can satisfy the length requirement by setting m = 0, n = 100. Our soft constraint can be encoded by simply accepting
any sequence of symbols of length 50 or less. For our labelling function, we could perhaps consider three key symbols
that activate complicated functions in our program along with a label for functions with invalid symbols. We can then
create 8 labels representing which of the symbols are in a generated word, along with a label indicating a program with
symbols that do not exist in well formed programs. We can then create a relatively simple label function that recognizes
these using a DFA with label annotated accepting states.

Based off the above, our fuzz testing problem takes the form LCI(UCFG, DFA, DFA) or MELCI(UCFG, DFA,
DFA), implying we have a polynomial time improvisation scheme for it by Theorem 4.6.2.

28

Chapter 5

Conclusion

In this paper, we introduced Labelled Control Improvisation in the form of the Labelled Control Improvisation problem and
the Maximum Entropy Labelled Control Improvisation problem, both of which allow us to include a labelling specification
to label the improvisations we generate. In both problems, this allows us finer control over the randomness of our
improviser. LCI gives us total control over all of the randomness requirements, while MELCI allows us to specify the
desired marginal probability bounds over the label classes, and computes the maximum entropy improvising distribution
that satisfies those bounds. We calculate the runtime for some general classes of specifications, providing upper and
lower bounds on most possible choices. We also include several motivating examples showcasing the extra control we gain
through Labelled Control Improvisation.

In future work, we plan to augment LCI further, replacing the soft constraint with a cost function. In all of our
motivating examples, we measure some sort of cost that we would like to keep minimal within a certain tolerance. It is
a natural extension of this goal to replace the soft constraint with a cost function that allows us more specific control
over the “cost” of various improvisations. Using this extension, we hope to address the problem of Design Improvisation,
involving generating different improvisations of various types, or labels, while keeping the expectation of the “cost” of the
improvisations within a certain threshold.

29

Bibliography

[1] Daniel J. Fremont et al. “Control Improvisation”. In: 35th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2015). Ed. by Prahladh Harsha and G. Ramalingam.
Vol. 45. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, 2015, pp. 463–474. isbn: 978-3-939897-97-2. doi: 10.4230/LIPIcs.FSTTCS.2015.463.
url: http://drops.dagstuhl.de/opus/volltexte/2015/5659.

[2] Daniel J. Fremont, Alexandre Donzé, and Sanjit A. Seshia. Control Improvisation. 2017. arXiv: 1704.06319 [cs.FL].
url: https://arxiv.org/abs/1704.06319.

[3] Daniel J. Fremont. “Algorithmic Improvisation”. University of California Berkeley, 2019. url: https://www2.
eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf.

[4] Alexandre Donze et al. “Machine Improvisation with Formal Specifications”. In: 40th International Computer Music
Conference (ICMC). Sept. 2014. url: https://quod.lib.umich.edu/i/icmc/bbp2372.2014.196/1.

[5] Alexandre Donze et al. Control Improvisation with Application to Music. Tech. rep. UCB/EECS-2013-183. EECS
Department, University of California, Berkeley, Nov. 2013. url: http : / / www2 . eecs . berkeley . edu / Pubs /

TechRpts/2013/EECS-2013-183.html.

[6] Daniel J. Fremont and Sanjit A. Seshia. “Reactive Control Improvisation”. In: Computer Aided Verification - 30th
International Conference. Ed. by Hana Chockler and Georg Weissenbacher. Vol. 10981. Lecture Notes in Computer
Science. Springer, 2018, pp. 307–326. doi: 10.1007/978-3-319-96145-3_17. url: https://doi.org/10.1007/
978-3-319-96145-3%5C_17.

[7] Marcell Vazquez-Chanlatte et al. Entropy-Guided Control Improvisation. 2021. arXiv: 2103.05672 [cs.RO].

[8] Joy M. Thomas Thomas M. Cover. Elements of Information Theory. 2006.

[9] Sergei Chubanov. “A Polynomial-Time Descent Method for Separable Convex Optimization Problems with Linear
Constraints”. In: SIAM Journal on Optimization 26.1 (2016), pp. 856–889. doi: 10.1137/14098524x.

[10] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. “Random generation of combinatorial structures from
a uniform distribution”. In: Theoretical Computer Science 43 (1986), pp. 169–188. issn: 0304-3975. doi: https:
//doi.org/10.1016/0304-3975(86)90174-X. url: https://www.sciencedirect.com/science/article/pii/
030439758690174X.

[11] Mihir Bellare, Oded Goldreich, and Erez Petrank. “Uniform Generation of NP-Witnesses Using an NP-Oracle”. In:
Information and Computation 163.2 (2000), pp. 510–526. issn: 0890-5401. doi: https://doi.org/10.1006/inco.
2000.2885. url: https://www.sciencedirect.com/science/article/pii/S0890540100928852.

[12] Timothy Hickey and Jacques Cohen. “Uniform Random Generation of Strings in a Context-Free Language”. In:
SIAM Journal on Computing 12.4 (1983), pp. 645–655. doi: 10.1137/0212044.

[13] Sampath Kannan, Z. Sweedyk, and Steve Mahaney. “Counting and Random Generation of Strings in Regular Lan-
guages”. In: Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial
and Applied Mathematics, 1995, pp. 551–557. isbn: 0898713498.

30

https://doi.org/10.4230/LIPIcs.FSTTCS.2015.463
http://drops.dagstuhl.de/opus/volltexte/2015/5659
https://arxiv.org/abs/1704.06319
https://arxiv.org/abs/1704.06319
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-133.pdf
https://quod.lib.umich.edu/i/icmc/bbp2372.2014.196/1
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-183.html
https://doi.org/10.1007/978-3-319-96145-3_17
https://doi.org/10.1007/978-3-319-96145-3%5C_17
https://doi.org/10.1007/978-3-319-96145-3%5C_17
https://arxiv.org/abs/2103.05672
https://doi.org/10.1137/14098524x
https://doi.org/https://doi.org/10.1016/0304-3975(86)90174-X
https://doi.org/https://doi.org/10.1016/0304-3975(86)90174-X
https://www.sciencedirect.com/science/article/pii/030439758690174X
https://www.sciencedirect.com/science/article/pii/030439758690174X
https://doi.org/https://doi.org/10.1006/inco.2000.2885
https://doi.org/https://doi.org/10.1006/inco.2000.2885
https://www.sciencedirect.com/science/article/pii/S0890540100928852
https://doi.org/10.1137/0212044

	Introduction
	Related Work
	Motivating Examples
	Robotic Planning
	Fuzz Testing

	Classic Control Improvisation

	Labelled Control Improvisation
	Definition
	Necessary and Sufficient Conditions for Labelled Control Improvisation

	Maximum Entropy Labelled Control Improvisation
	Definition
	Construction of Maximum Entropy Distribution
	Initial Problem
	Bi-Uniform Label Class Distribution
	Optimization of Distribution

	Algorithm for Computing Maximum Entropy Distribution

	Time Complexity for LCI and MELCI Problems
	Definitions
	Construction of Labelling Function
	Essential Operations
	Polynomial Relative to an Oracle Time Improvisation Schemes
	Upper Bound on Time Complexity for Improvisation Schemes
	Time Complexity for Choice of Specification
	Complexity of Motivating Examples
	Robotic Planning
	Fuzz Testing

	Conclusion

